二叉树各种操作

5 篇文章 0 订阅
#include<iostream>
#include <deque>
#include <stack>
using namespace std;
//二叉树的节点类
class BinTreeNode
{
private:
	int data;
	BinTreeNode *left, *right;
public:
	//利用初始化列表完成data,left,rightn的初始化
	BinTreeNode(const int &item, BinTreeNode *lPtr = NULL, BinTreeNode *rPtr = NULL) :data(item), left(lPtr), right(rPtr){};
	void set_data(int item)
	{
		data = item;
	}
	int get_data()const
	{
		return data;
	}
	void set_left(BinTreeNode *l)
	{
		left = l;
	}
	BinTreeNode* get_left()const
	{
		return left;
	}
	void set_right(BinTreeNode *r)
	{
		right = r;
	}
	BinTreeNode* get_right()const
	{
		return right;
	}
};

//二叉树
class BinTree
{
private:
	BinTreeNode *root;
public:
	BinTree(BinTreeNode *t = NULL) :root(t){};
	~BinTree(){ delete root; };
	void set_root(BinTreeNode *t)
	{
		root = t;
	}
	BinTreeNode* get_root()const
	{
		return root;
	}
	//1.创建二叉树
	BinTreeNode* create_tree();
	//2.前序遍历
	void pre_order(BinTreeNode *r)const;
	//3.中序遍历
	void in_order(BinTreeNode *r)const;
	//4.后序遍历
	void post_order(BinTreeNode *r)const;
	//5.层次遍历
	void level_order(BinTreeNode *r)const;
	//6.获得叶子节点的个数
	int get_leaf_num(BinTreeNode *r)const;
	//7.获得二叉树的高度
	int get_tree_height(BinTreeNode *r)const;
	//8.交换二叉树的左右儿子
	void swap_left_right(BinTreeNode *r);
	//9.求两个节点pNode1和pNode2在以r为树根的树中的最近公共祖先
	BinTreeNode* get_nearest_common_father(BinTreeNode *r, BinTreeNode *pNode1, BinTreeNode *pNode2)const;
	//10.打印和为某一值的所有路径
	void print_rout(BinTreeNode *r, int sum)const;
	//11.判断一个节点t是否在以r为根的子树中
	bool is_in_tree(BinTreeNode *r, BinTreeNode *t)const;
};

//创建二叉树,这里不妨使用前序创建二叉树,遇到‘#’表示节点为空
BinTreeNode* BinTree::create_tree()
{
	char item;
	BinTreeNode *t, *t_l, *t_r;
	cin >> item;
	if (item != '#')
	{
		BinTreeNode *pTmpNode = new BinTreeNode(item - 48);
		t = pTmpNode;
		t_l = create_tree();
		t->set_left(t_l);
		t_r = create_tree();
		t->set_right(t_r);
		return t;
	}
	else
	{
		t = NULL;
		return t;
	}
}

//前序遍历
void BinTree::pre_order(BinTreeNode *r)const
{
	BinTreeNode *pTmpNode = r;
	if (pTmpNode != NULL)
	{
		cout << pTmpNode->get_data() << " ";
		pre_order(pTmpNode->get_left());
		pre_order(pTmpNode->get_right());
	}
}
//中序遍历
void BinTree::in_order(BinTreeNode *r)const
{
	BinTreeNode *pTmpNode = r;
	if (pTmpNode != NULL)
	{
		in_order(pTmpNode->get_left());
		cout << pTmpNode->get_data() << " ";
		in_order(pTmpNode->get_right());
	}
}
//后序遍历
void BinTree::post_order(BinTreeNode *r)const
{
	BinTreeNode *pTmpNode = r;
	if (pTmpNode != NULL)
	{
		post_order(pTmpNode->get_left());
		post_order(pTmpNode->get_right());
		cout << pTmpNode->get_data() << " ";
	}
}

//层次遍历,用队列很方便
void BinTree::level_order(BinTreeNode *r)const
{
	if (r == NULL)
		return;
	deque<BinTreeNode*> q;
	q.push_back(r);
	while (!q.empty())
	{
		BinTreeNode *pTmpNode = q.front();
		cout << pTmpNode->get_data() << " ";
		q.pop_front();
		if (pTmpNode->get_left() != NULL)
		{
			q.push_back(pTmpNode->get_left());
		}
		if (pTmpNode->get_right() != NULL)
		{
			q.push_back(pTmpNode->get_right());
		}
	}
}

//树中的叶子节点的个数 = 左子树中叶子节点的个数 + 右子树中叶子节点的个数。利用递归代码也是相当的简单,易懂。 
//获取叶子节点的个数
int BinTree::get_leaf_num(BinTreeNode *r)const
{
	if (r == NULL)//该节点是空节点,比如建树时候用'#'表示
	{
		return 0;
	}
	if (r->get_left() == NULL && r->get_right() == NULL)//该节点并不是空的,但是没有孩子节点
	{
		return 1;
	}
	//递归整个树的叶子节点个数 = 左子树叶子节点的个数 + 右子树叶子节点的个数
	return get_leaf_num(r->get_left()) + get_leaf_num(r->get_right());
}

//求二叉树的高度也是非常简单,不用多说:树的高度 = max(左子树的高度,右子树的高度) + 1 。
//获得二叉树的高度
int BinTree::get_tree_height(BinTreeNode *r)const
{
	if (r == NULL)//节点本身为空
	{
		return 0;
	}
	if (r->get_left() == NULL && r->get_right() == NULL)//叶子节点
	{
		return 1;
	}
	int l_height = get_tree_height(r->get_left());
	int r_height = get_tree_height(r->get_right());
	return l_height >= r_height ? l_height + 1 : r_height + 1;
}

//交换二叉树的左右儿子,可以先交换根节点的左右儿子节点,然后递归以左右儿子节点为根节点继续进行交换。树中的操作有先天的递归性。。
//交换二叉树的左右儿子
void BinTree::swap_left_right(BinTreeNode *r)
{
	if (r == NULL)
	{
		return;
	}
	BinTreeNode *pTmpNode = r->get_left();
	r->set_left(r->get_right());
	r->set_right(pTmpNode);
	swap_left_right(r->get_left());
	swap_left_right(r->get_right());
}

//判断一个节点t是否在以r为根的子树中
bool BinTree::is_in_tree(BinTreeNode *r, BinTreeNode *t)const
{
	if (r == NULL)
	{
		return false;
	}
	else if (r == t)
	{
		return true;
	}
	else
	{
		bool has = false;
		if (r->get_left() != NULL)
		{
			has = is_in_tree(r->get_left(), t);
		}
		if (!has && r->get_right() != NULL)
		{
			has = is_in_tree(r->get_right(), t);
		}
		return has;
	}
}


// 求两个节点的公共祖先可以用到上面的:判断一个节点是否在一颗子树中。
//(1)如果两个节点同时在根节点的右子树中,则最近公共祖先一定在根节点的右子树中。
//(2)如果两个节点同时在根节点的左子树中,则最近公共祖先一定在根节点的左子树中。
//(3)如果两个节点一个在根节点的右子树中,一个在根节点的左子树中,则最近公共祖先一定是根节点。当然,要注意的是:可能一个节点pNode1在以另一个节点pNode2为根的子树中,
//	   这时pNode2就是这两个节点的最近公共祖先了。显然这也是一个递归的过程啦:
//求两个节点的最近公共祖先
BinTreeNode* BinTree::get_nearest_common_father(BinTreeNode *r, BinTreeNode *pNode1, BinTreeNode *pNode2)const
{
	//pNode2在以pNode1为根的子树中(每次递归都要判断,放在这里不是很好。)
	if (is_in_tree(pNode1, pNode2))
	{
		return pNode1;
	}
	//pNode1在以pNode2为根的子树中
	if (is_in_tree(pNode2, pNode1))
	{
		return pNode2;
	}
	bool one_in_left, one_in_right, another_in_left, another_in_right;
	one_in_left = is_in_tree(r->get_left(), pNode1);
	another_in_right = is_in_tree(r->get_right(), pNode2);
	another_in_left = is_in_tree(r->get_left(), pNode2);
	one_in_right = is_in_tree(r->get_right(), pNode1);
	if ((one_in_left && another_in_right) || (one_in_right && another_in_left))
	{
		return r;
	}
	else if (one_in_left && another_in_left)
	{
		return get_nearest_common_father(r->get_left(), pNode1, pNode2);
	}
	else if (one_in_right && another_in_right)
	{
		return get_nearest_common_father(r->get_right(), pNode1, pNode2);
	}
	else
	{
		return NULL;
	}
}


//2.9 从根节点开始找到所有路径,使得路径上的节点值和为某一数值(路径不一定以叶子节点结束)
//注意这两个栈的使用
stack<BinTreeNode *>dfs_s;
stack<BinTreeNode *>print_s;
//打印出从r开始的和为sum的所有路径
void BinTree::print_rout(BinTreeNode *r, int sum)const
{
	if (r == NULL)
	{
		return;
	}
	//入栈
	sum -= r->get_data();
	dfs_s.push(r);
	if (sum <= 0)
	{
		if (sum == 0)
		{
			while (!dfs_s.empty())
			{
				print_s.push(dfs_s.top());
				dfs_s.pop();
			}
			while (!print_s.empty())
			{
				cout << print_s.top()->get_data() << " ";
				dfs_s.push(print_s.top());
				print_s.pop();
			}
			cout << endl;
		}
		sum += r->get_data();
		dfs_s.pop();
		return;
	}
	//递归进入左子树
	print_rout(r->get_left(), sum);
	//递归进入右子树
	print_rout(r->get_right(), sum);
	//出栈
	sum += r->get_data();
	dfs_s.pop();
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值