矩阵谱半径

矩阵谱半径是最大特征值(含绝对值),关乎矩阵的收敛性与方程解的稳定性。当谱半径小于一时,矩阵的逆矩阵存在。在Banach空间中,谱半径与算子的范数有密切联系,对于正常算子,其谱半径等于相似算子范数的下界。谱半径还可用于分析矩阵幂序列的收敛行为。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

矩阵谱半径指的是矩阵的最大特征值(含绝对值)。

它可以判断收敛性,也可以判断方程解的稳定性。

一般情况下,当存在一个单位矩阵减去另外一个矩阵的形式时, 谱半径小于一就是为了确保它们之间的差值为正这样逆矩阵才会存在,可以用来验证一个方案是否可行。

The radius 关于谱半径(spectrum <wbr>radius) of the smallest closed disc in the plane that contains the spectrum of this element (cf. Spectrum of an element). The spectral radius of an element 关于谱半径(spectrum <wbr>radius) is connected with the norms of its powers by the formula

关于谱半径(spectrum <wbr>radius)

which, in particular, implies that 关于谱半径(spectrum <wbr>radius) . The spectral radius of a bounded linear operator on a Banach space is the spectral radius of it regarded as an element of the Banach algebra of all operators. In a Hilbert space, the spectral radius of an operator is equal to the greatest lower bound of the norms of the operators similar to it (see [2]):

关于谱半径(spectrum <wbr>radius)

If the operator is normal, then 关于谱半径(spectrum <wbr>radius) (cf. Normal operator).

 

 

定义:

Let λ1, ..., λn be the (real or 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值