图论学习之图的连通性:强连通分支+最大团

强连通分支的定义:有向图G=(V,E)的一个强连通分支就是一个最大的顶点集合(不能再增加顶点的意思)C,对于C中的每一对顶点u,v,有u~v和v~u;即顶点u和v是互相可达的,注:不要求u和v满足:(u,v)属于E,即不要求u和v之间必须直接可达!

完全子图的定义:有向图G=(V,E)的一个完全子图就是一个顶点集合C,对于C中的每一对顶点u,v,有(u,v)属于E,注:要求u,v之间必须直接可达!

团的定义:有向图G的完全子图C是G的一个团<=>C不包含在G的更大的完全子图中,注:C本身可能并不是含顶点数最多的完全子图,C仅仅是满足了完全子图的定义同时还没有其它的完全子图能完全包含C。

最大团的定义:G的所有团中含顶点数最多的团。

强连通分支与最大团不是同一个问题!

强连通分支算法的理论证明

首先,设C和C'是有向图G=(V,E)中两个不同的强连通分支,如果u属于C,v属于C',且有(u,v)属于E,那么不可能从v出发能到达u。即不同的强连通分支之间要么没有边相连,要么只能是C的某些边指向C',或者C'某些边指向C。

其次,如果有(u,v)属于E,那么f(C)>f(C')(f(C)=max{f[u]|u属于C})。

然后,在G的转置图中,如果有(u,v)属于E的转置,u属于C,v属于C',那么,则f(C')>f(C)。即转置图中,任意两个不同强连通分支的边都是从(第一个在深度优先搜索中)有着更早的完成时间的分支指向有着较晚的完成时间的分支。

最后,在转置图中总是找有最大完成时间的点(且尚未被搜索过的)进行深搜,这个点的完成时间代表了它所在强连通分支的最大完成时间,而根据上面的理论,这个强连通分支只可能有发出的边指向比它有更大的完成时间的强连通同分支,而这与它本身是具有最大完成时间的前提矛盾,所以,从这点出发的深搜只能搜索到与这个点同处于一个强连通分支内的点;接着,再找一个没有被搜过的且完成时间在剩下的点里面是最大的点,深搜,如此往复,直到所有的强连通分支都被搜索了出来。

最大团的实现代码

时间复杂度:O(N*2^N)

#include<stdio.h>

const int N = 5;//图的顶点个数

int map[N+1][N+1];//图的顶点从1开始编号

int cn,bestn;//cn表示当前顶点个数;bestn表示最大团中的顶点个数

int x[N+1],bestx[N+1];//x表示当前解;bestx表示最有解---最大团;bestx[i] = 1表示顶点i在最大团中

int j;

void Backtrack(int i)

{

if(i>N)//如果顶点编号从0开始,这里得变成i>=N

{

     

if(cn>bestn)

{

   for(j = 1; j<=N; ++j)bestx[j] = x[j];

   bestn = cn;

   return;

}

return;

}

int OK = 1;

for(j = 1; j<i; ++j)

{

      if(x[j] && map[i][j] == 0)

   {

    OK = 0;

    break;

   }

}

if(OK)//注意“第i层”这个概念的理解,这里每一层表示一个顶点的选择,左边分支表示i位于当前解中

{

   x[i] = 1;

   ++cn;

   Backtrack(i+1);

   x[i] = 0;

   --cn;

}

if(cn+N-i>bestn)

{

   x[i] = 0;

   Backtrack(i+1);

}

}

int main()

{

    int u,v;

freopen("in.txt","r",stdin);

while(scanf("%d %d",&u,&v)+1)

{

   map[u][v] = 1;

   map[v][u] = 1;//注意这里是无向图

}

Backtrack(1);

printf("The maxClique has %d vertexes.\n",bestn);

    for(j = 1; j<=N; ++j)

{

   if(bestx[j])

   printf("%d ",j);

}

return 0;

}

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: 图论是一门研究(Graph)的数学学科,它可以用来描述和解决各种问题。在数学建模中,图论可以用来解决许多实际问题,如路径规划,网络优化,网络安全,资源分配等。本文将讨论图论在数学建模中的应用,以及它如何解决复杂的问题。图论的基本概念是(Graph),它一般由节点(Node)和边(Edge)组成。节点表示一个实体或一个概念,而边表示实体之间的关系。因此,可以用来表示复杂的网络系统,如计算机网络、社交网络、交通网络等。在数学建模中,图论可以用来解决许多复杂的问题。例如,图论可以用来解决最短路径问题,即找出从一个节点到另一个节点的最短路径。这可以用来解决许多实际问题,如旅行销售商问题、火车路线规划问题等。此外,图论还可以用来解决网络优化问题,即在网络中找到最佳路径,以最大化网络性能。此外,图论还可以用于网络安全,即在网络中寻找潜在的攻击路径。此外,图论还可以用于资源分配,即在网络中如何有效地分配资源。例如,一个网络中的节点可能存在多种资源,如带宽、存储空间等,如何有效地分配这些资源,就需要图论来解决。总之,图论可以用来解决数学建模中的许多复杂问题,如路径规划、网络优化、网络安全、资源分配等。它可以用来解决实际问题,为许多行业提供有价值的参考。因此,图论在数学建模中具有重要的意义。 ### 回答2: 图论是数学中的一个重要分支,它研究抽象的模型及其性质。由一组顶点和连接这些顶点的边组成,可以用来表示现实世界中的许多问题,如交通路网、社交网络、电路等。 在数学建模中,图论被广泛应用于解决实际问题。模型可以帮助我们揭示问题的内在结构和关系,从而提供解决问题的思路和方法。图论不仅可以帮助我们理解问题的本质,还能为问题的分析和优化提供有效的工具和算法。 图论在数学建模中的应用可以分为两个方面。首先,可以用来描述和分析现实世界中的系统和关系。例如,我们可以用来表示城市之间的交通网络,顶点表示城市,边表示道路或航线。通过分析的特性,我们可以研究交通系统的连通性、最短路径、拥堵情况等问题,进而提出改善交通状况的策略和建议。 其次,图论可以用来解决一些实际问题。例如,旅行商问题是一个经典的组合优化问题,它要求在给定若干城市之间找到一条最短的回路,使得旅行商能够在每个城市都访问一次且总行程最短。的哈密顿回路和最短路径算法可以用来解决这个问题,并给出最佳的巡回路线。 另外,图论还可以应用于社交网络分析、电路设计和通信网络优化等领域。例如,在社交网络分析中,我们可以用来表示人与人之间的关系,通过分析的拓扑结构和节点的属性,可以研究社交网络的社群结构、信息传播特性等问题。 综上所述,图论在数学建模中有着广泛的应用。它可以帮助我们分析问题的内部结构和关系,并提供解决问题的方法和算法。图论的应用领域涵盖了交通规划、组合优化、社交网络和通信网络等多个领域,为实际问题的分析和优化提供了有效的工具和思路。 ### 回答3: 图论是数学中的一个重要分支,研究的是的性质和之间的关系。图论广泛应用于计算机科学、通信网络、电路设计等领域,而在数学建模中的应用也十分丰富。 数学建模是将实际问题抽象为数学模型并进行求解的过程,其目的是通过数学的方法分析和解决实际问题。在数学建模中,图论可以用来描述和分析各种复杂关系网络。 首先,图论在交通流模型中有着广泛的应用。交通网络可以被看作是一张,节点表示不同的交通节点,边表示节点之间的道路或路径。通过图论的方法,可以研究交通网络中的路由选择、交通流的分布等问题,为交通规划和交通管理提供了理论基础。 其次,图论在社交网络分析中也有着重要的地位。社交网络可以用图论中的模型来表示,节点代表个体,边表示个体之间的关系,如友谊、合作等。通过图论的方法,可以研究社交网络中的节点度中心性、群聚系数、社区结构等指标,揭示社交网络的结构和演化规律。 另外,图论还被广泛应用于电力系统建模。电力系统可以被抽象为一张,节点表示发电站或负荷节点,边表示输电线路。通过图论的方法,可以研究电力系统中的电压稳定性、潮流分布等问题,为电力系统的规划和运行提供支持。 总之,图论在数学建模中有着广泛的应用。它的研究对象包括交通网络、社交网络、电力系统等复杂关系网络,通过图论的方法可以揭示这些网络的结构和运行规律,为实际问题的分析和解决提供了重要的工具和理论基础。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值