性能分析
以下在计算空间复杂度的时候我都把系统栈(不是数据结构里的栈)所占空间算进去。
子集问题分析:
- 时间复杂度:O(2^n),因为每一个元素的状态无外乎取与不取,所以时间复杂度为O(2^n)
- 空间复杂度:O(n),递归深度为n,所以系统栈所用空间为O(n),每一层递归所用的空间都是常数级别,注意代码里的result和path都是全局变量,就算是放在参数里,传的也是引用,并不会新申请内存空间,最终空间复杂度为O(n)
排列问题分析:
- 时间复杂度:O(n!),这个可以从排列的树形图中很明显发现,每一层节点为n,第二层每一个分支都延伸了n-1个分支,再往下又是n-2个分支,所以一直到叶子节点一共就是 n * n-1 * n-2 * ..... 1 = n!。
- 空间复杂度:O(n),和子集问题同理。
组合问题分析:
- 时间复杂度:O(2^n),组合问题其实就是一种子集的问题,所以组合问题最坏的情况,也不会超过子集问题的时间复杂度。
- 空间复杂度:O(n),和子集问题同理。
N皇后问题分析:
- 时间复杂度:O(n!) ,其实如果看树形图的话,直觉上是O(n^n),但皇后之间不能见面所以在搜索的过程中是有剪枝的,最差也就是O(n!),n!表示n * (n-1) * .... * 1。
- 空间复杂度:O(n),和子集问题同理。
解数独问题分析:
- 时间复杂度:O(9^m) , m是'.'的数目。
- 空间复杂度:O(n^2),递归的深度是n^2