使用pip
pip是一个命令行工具,不是一个代码指令,所以要在其前面加上感叹号。
新建笔记本,并且输入以下指令
! pip install tensorflow
命令执行完成如下图所示:
再输出tensorflow的版本,检验是否安装成功
import tensorflow as tf
print(tf.__version__)
安装成功,版本号如下:
安装GPU版本的tensorflow:
新建一个笔记本,为确保在运行时候有一个GPU,方法是重置所有的runtime。
中文版:
设置为GPU
安装:
成功:
使用指令检查tensorflow的版本
import tensorflow as tf
print(tf.__version__)
使用指令查看是否有GPU
tf.config.list_physical_devices
更新:
!pip3 install --upgrade tensorflow-gpu
检查还是返回空
就决定卸载然后重新安装
!pip3 uninstall tensorflow-gpu
!pip3 install tensorflow-gpu
运行以下指令打印可用的CPU和GPU
from tensorflow.python.client import device_lib
print(device_lib.list_local_devices())
开始没有的原因:
最开始存在两个tensorflow包:无gpu版本的tensorflow和gpu版本的tensorflow-gpu,可能是默认使用了无gpu版的tensorflow,所以可用设备中没有GPU
接下来记录安装GPU版本的pytorch
首先修改runtime为GPU,然后执行以下指令:
!pip install torch
查看是否安装成功,输入以下指令:
import torch
torch.cuda.is_available()
查看GPU的数量,执行如下命令行语句:
torch.cuda.device_count()
torch.cuda.get_device_name(0)
使用如下命令,查看指定GPU容量
torch.cuda.get_device_capability()
查看GPU的内存使用情况
!nvidia-smi