在colab中安装tensorflow以及pytorch

使用pip
pip是一个命令行工具,不是一个代码指令,所以要在其前面加上感叹号。
新建笔记本,并且输入以下指令

! pip install tensorflow

在这里插入图片描述
命令执行完成如下图所示:
在这里插入图片描述
再输出tensorflow的版本,检验是否安装成功

import tensorflow as tf
print(tf.__version__)

安装成功,版本号如下:
在这里插入图片描述

安装GPU版本的tensorflow:
新建一个笔记本,为确保在运行时候有一个GPU,方法是重置所有的runtime。
在这里插入图片描述
中文版:在这里插入图片描述
在这里插入图片描述

设置为GPU
在这里插入图片描述
在这里插入图片描述
安装:
在这里插入图片描述
成功:
在这里插入图片描述
使用指令检查tensorflow的版本

import tensorflow as tf
print(tf.__version__)

在这里插入图片描述
使用指令查看是否有GPU

tf.config.list_physical_devices

在这里插入图片描述

更新:

!pip3 install --upgrade tensorflow-gpu

在这里插入图片描述

检查还是返回空
在这里插入图片描述
就决定卸载然后重新安装

!pip3 uninstall tensorflow-gpu
!pip3 install tensorflow-gpu

在这里插入图片描述

在这里插入图片描述
运行以下指令打印可用的CPU和GPU

from tensorflow.python.client import device_lib
print(device_lib.list_local_devices())

在这里插入图片描述

开始没有的原因:
最开始存在两个tensorflow包:无gpu版本的tensorflow和gpu版本的tensorflow-gpu,可能是默认使用了无gpu版的tensorflow,所以可用设备中没有GPU

在这里插入图片描述

在这里插入图片描述
接下来记录安装GPU版本的pytorch

首先修改runtime为GPU,然后执行以下指令:

!pip install torch

在这里插入图片描述
查看是否安装成功,输入以下指令:

import torch
torch.cuda.is_available()

在这里插入图片描述
查看GPU的数量,执行如下命令行语句:

torch.cuda.device_count()
torch.cuda.get_device_name(0)

在这里插入图片描述

使用如下命令,查看指定GPU容量

torch.cuda.get_device_capability()

在这里插入图片描述

查看GPU的内存使用情况

!nvidia-smi

在这里插入图片描述

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值