2021年4月12日
- 朴素贝叶斯的朴素在哪?为什么要引入?
朴素在于假设计算条件概率分布P,在Y确定的时候,X的各个分量之间相互独立,但是这个假设在现实生活中往往不成立;那为什么引入呢,这个在于前置的特征选择,需要选取特征间相关性较低的;如果满足这个前置特征,就可以引入计算,计算的优势是速度比较快,可解释性强; - P(X|Y)=0的时候怎么办?
采用贝叶斯估计,拉普拉斯平滑 - 介绍一下SVM?
SVM是一个面向数据的分类算法,它的目标是为确定一个分类超平面,从而将不同的数据分隔开。
当训练数据线性可分时,通过硬间隔最大化,学习一个线性的分类器,即线性可分支持向量机,又称为硬间隔支持向量机;当训练数据近似线性可分时,通过软间隔最大化,也学习一个线性的分类器,即线性支持向量机,又称为软间隔支持向量机;当训练数据线性不可分时,通过使用核技巧及软间隔最大化,学习非线性支持向量机。 - HMM的三要素?引申的3个问题以及对应解决办法?
①. 初始状态转移概率
②. 状态转移矩阵
③. 观测矩阵
问题:
①. 评估问题
②. 模型学习问题(EM)
③. 解码/预测问题(viterbi) - skip-gram与CBOW区别?
skip-gram: 中间推周围
CBOW: 周围推中间
6. bert?
本来想问的是训练数据的构造之类,他答成了网络,这个那就后续再补; - 多线程和多进程?
python是有GIL锁,线程适合I/O密集型的任务,一般情况下使用多进程比较好;
本人需要加深印象CNN与TEXTCNN
Cnn:
TextCnn: