Numpy : 使用np.newaxis增加一维,用于计算【很方便】

>>> newaxis is None
True
>>> x = np.arange(3)
>>> x
array([0, 1, 2])
>>> x[:, newaxis]
array([[0],
[1],
[2]])

将一个矩阵增加一维,在矩阵乘法中把两个一位矩阵相乘

此外在切片中numpy.newaxis效果和None是一样的,None是它的别名

参考

附一个写的非常好的代码:

    bbox_a:shape(N,4)
    bbox_b:shape(K,4)
    
    tl = np.maximum(bbox_a[:, None, :2], bbox_b[:, :2])
    #(N,K,2)
   
    br = np.minimum(bbox_a[:, None, 2:], bbox_b[:, 2:])
    #(N,K,2)

    area_i = np.prod(br - tl, axis=2) * (tl < br).all(axis=2)
    #(N,K)
    area_a = np.prod(bbox_a[:, 2:] - bbox_a[:, :2], axis=1)
    #(N,)
    area_b = np.prod(bbox_b[:, 2:] - bbox_b[:, :2], axis=1)
    #(K,)
    return area_i / (area_a[:, None] + area_b - area_i)
    #(N,K)

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值