2018/2/2

版权声明:233333333333333333333333333333333333333333 https://blog.csdn.net/lcrtest/article/details/79242757

1.[Gym-101673] [Problem I]

题意:给出四个数求24点,交换两个数代价为2,加一个括号代价为1,求最小代价
做法:标准做法为建括号序列树
在训练中,我们发现一共只有10种合法的括号,于是。。暴力枚举这10种情况,每种情况求出后带上符号和括号扔进表达式求值的板子里面,就得出了正确结果
代码太长不扔了
这道题遇到了一个很罕见的bug:开了O2就是会RE,某个奇怪的值在某个奇怪的语句后莫名其妙跳了
换了下变量名顺序就过了
但愿以后不要遇到这种bug

2.[Gym-101666] [Problem C]

题意:给出一个序列(长度1e5),求有多少个不同的区间gcd
做法:首先我们固定右端点
有一个重要的结论:不同的gcd最多只有log个(每次求gcd要么不变要么至少除以2)
考察右端点从rr+1的变化
首先出现新的gcd a[r+1]
然后是前面的所有gcd全部与a[r+1]做一次gcd操作
最后去重
复杂度可以做到nlog2n
由于本人偷懒不想写归并于是变成了nlog3n
代码

//Copyright(c)2017 Mstdream
#include<bits/stdc++.h>
using namespace std;
#define LL long long
inline void splay(LL &v){
    v=0;char c=0;LL p=1;
    while(c<'0' || c>'9'){if(c=='-')p=-1;c=getchar();}
    while(c>='0' && c<='9'){v=(v<<3)+(v<<1)+c-'0';c=getchar();}
    v*=p;
}
const int N=500010;
LL a[N*50],s[55];
int n,cnt,tot;
int main(){
    cin>>n;
    for(int i=1;i<=n;i++){
        LL x;splay(x);
        s[++cnt]=x;
        for(int j=1;j<cnt;j++)s[j]=__gcd(s[j],x);
        sort(s+1,s+cnt+1);
        cnt=unique(s+1,s+cnt+1)-s-1;
        for(int j=1;j<=cnt;j++)a[++tot]=s[j];
    }
    sort(a+1,a+tot+1);
    cnt=unique(a+1,a+tot+1)-a-1;
    printf("%d\n",cnt);
}

3.[Gym-101666] [Problem K]

题意:一场比赛,给出nn的表,ij列表示第i个人是否能打赢第j个人,求一个序列aa[1]为一开始的擂主,a[2],a[3]a[n]依次挑战当前的擂主,胜者继续作为擂主,求一个能让第k个人最终胜出的序列a
做法:如果i能胜j则视为ij有边,从第k个人开始bfs,如果能bfs到所有人逆向输出bfs序即可,否则无解
这么做的正确性:无论当前哪一个人是擂主,他后面总有一个人可以战胜它。跑到后面一定是第k个人获胜
代码:

//Copyright(c)2017 Mstdream
#include<bits/stdc++.h>
using namespace std;
int n,dep[1005],tot;
char s[1005][1005];
void dfs(int now,int d){
    dep[now]=d;tot++;
    for(int i=1;i<=n;i++){
        if(s[now][i]=='1'&&!dep[i])dfs(i,d+1);
    }
}
int main(){
    scanf("%d",&n);
    for(int i=1;i<=n;i++){
        scanf("%s",s[i]+1);
    }
    dfs(1,1);
    if(tot<n)puts("impossible"),exit(0);
    for(int i=1000;i>=1;i--){
        for(int j=1;j<=n;j++){
            if(dep[j]==i)printf("%d ",j-1);
        }
    }
}

4.Codeforces Round #459 (Div. 1)D

题意:给一棵树(n<=100),求在所有这n个点中的生成树中,与当前树重合k条边的树有多少个(mod1e9+7),输出k=0,1,2n1的答案
做法:(来自Claris的教导)
f[i]表示i条边重合的方案数,生成函数g(x)=f[0]x0+f[1]x1+f[2]x2+...
然后你枚举nx,代入算出g(x)的值,插值求出所有f
至于算g,就是所有生成树树边权值乘积的和,就是MatrixTree
为什么g是所有生成树树边权值乘积的和呢?
观察g函数,相当于是原来树边的边连了x条,原来非树边的边连了1条,这样如果有k条边重合的话方案数就是f[k]xk,这样对于一个确定的x我们可以使用MatrixTree定理求出方案数
最终答案就是插值后展开(消元)
复杂度n4

阅读更多
换一批

没有更多推荐了,返回首页