如何查询小时级别的历史气象数据?

1:您可以访问中国气象局(cma.gov.cn)的官方网站。作为中国气象服务的主要机构,中国气象局提供了丰富的气象数据资源,包括历史天气数据。您可以在其官方网站上查找相关的数据查询服务或联系相关部门进行咨询。

2:您可以尝试使用数据分享平台,如(datashareclub.com)。这类平台通常提供详细且精确的历史天气数据,包括每天24小时的温度、降水量、湿度、空气质量指数(AQI)、气压、风向、风力、风速、露点(2m)、云量、太阳辐射以及能见度等信息。这些数据是真实发生的数据,而非预报数据,因此具有较高的参考价值。

3:国家气象信息中心(国家气象信息中心-中国气象数据网)也是获取天气历史数据的重要途径。作为国家级的气象数据中心,它拥有庞大的气象数据资源,并提供了数据查询和下载服务。您可以访问其官方网站,根据需求选择相应的数据集进行查询和下载。

4:天气网(weather.com.cn)也是一个不错的选择。作为中国知名的天气信息服务网站,它提供了丰富的天气信息和数据服务,包括历史天气数据的查询。您可以在其网站上输入相关的查询条件,如日期、地点等,获取所需的历史天气数据。

5.世界气象组织 wmo.ch世界气象组织(World Meteorological Organization,WMO)是联合国的专门机构之一,是联合国系统有关地球大气现状和特性,它与海洋的相互作用,它产生的气候及由此形成的水资源的分布方面的权威机构。

6.欧洲中尺度天气预报中心,(ecmwf.int)包括34个国家支持的国际性组织,是当今全球独树一帜的国际性天气预报研究和业务机构。其前身为欧洲的一个科学与技术合作项目。1975年ECMWF正式成立,总部设在英国的Bracknell。

### 福州历史气象数据查询方法 为了获取福州的历史气象数据,可以考虑多种途径和工具。以下是几种常见的方法及其特点: #### 方法一:通过官方渠道获取 可以从中央气象台官方网站(网址:<http://www.nmc.cn/>)爬取所需的数据[^3]。该网站提供了丰富的实时和历史天气数据,包括但不限于时间点、整点气温、整点降水量、风力、整点气压以及相对湿度等信息。具体操作可以通过编写爬虫程序来完成。 #### 方法二:利用公开数据库资源 NCEI(美国国家环境信息中心)提供了一个庞大的全球气象数据集,其中包含了详细的逐日降水量和其他气象指标的信息。经过处理后的数据已经涵盖了中国范围内的多个站点,并且单位已统一转换为毫米(mm)。如果目标时间段在1981年至2023年间,则可以直接使用此类预处理过的数据[^2]。 #### 方法三:借助第三方平台 除了上述两种主流方式外,“中国城市历史数据网”也是一个不错的选择。它自2011年起便开始记录全国各地的城市级别的详细气象状况,内容涉及温度变化趋势、降水分布特征等多个方面。值得注意的是,在此领域内虽然大多数开发者倾向于采用Python作为开发语言构建自己的网络爬虫应用,但实际上也可以尝试运用其他编程语言如R来进行类似的任务执行[^4]。 #### 示例代码片段 (基于 Python 的简单爬虫实现) 下面展示了一段基础版本用于从指定URL地址读取网页内容并解析成结构化形式以便后续进一步加工使用的样例脚本: ```python import requests from bs4 import BeautifulSoup def fetch_weather_data(url): response = requests.get(url) soup = BeautifulSoup(response.text, 'html.parser') # Assuming the data is within a table with class "weather-data" table = soup.find('table', {'class': 'weather-data'}) rows = table.findAll('tr')[1:] # Skip header row results = [] for row in rows: cols = row.findAll('td') date = cols[0].text.strip() temp = float(cols[1].text.strip()) precip = float(cols[2].text.strip()) if cols[2].text.strip() != '-' else None entry = { 'date': date, 'temperature': temp, 'precipitation': precip } results.append(entry) return results url = "http://example.com/fuzhou-historical-weather" # Replace this URL accordingly data = fetch_weather_data(url) print(data[:5]) # Print first five entries as sample output ``` 以上仅为示意性质的功能模块之一;实际项目当中还需要考虑到更多细节因素比如错误处理机制的设计等等。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值