Spreading the Wealth UVA - 11300 找规律+数学推导

传送门

题目大意:有n个人围成一圈,每个人有ai个金币,每个人可以向相邻的人传金币。求出需要传递最少的金币数目使得每个人手中的金币数相等,数据保证金币总数时n的倍数。

解题思路:

    我们设第i个人向前一个人传递xi个金币。并且我们可以求出每个人平均有多少个金币:M = sum/n;

           那么: A[i] + x[i+1] - x[i] = M           => x[i+1] = x[i] - (A[i] - M)

           即:x[2] = x[1] - (A[1] -M)

                   x[3] = x[2] - (A[2] - M)          => x[3] = x[1] -(A[1] -M) - (A[2] - M) 

                   ...

                   x[1] = x[1] - 0;

因此我们就转化成了 x[1] 到n个点的距离之和,每个点的距离ci = c[i-1] + (A[i] - M);  距离之和最小时 x1为这些点的中间。


AC代码:

#include <iostream>
#include <cstdio>
#include <algorithm>

using namespace std;

long long C[1000005];

int main()
{
	int n;
	while(~scanf("%d", &n))
	{
		long long sum = 0;
		for(int i=0; i<n; i++)
		{
			scanf("%lld", &C[i]);
			sum += C[i];
		}
		
		sum /= n;

		C[0] = 0;
		C[1] = C[1] - sum;
		for(int i =2; i<n; i++) C[i] = C[i-1] + C[i] -  sum;

		sort(C, C+n);

		long long ans =0;
		for(int i=0; i<n; i++) ans += abs(C[i] - C[n/2]);
		
		printf("%lld\n", ans);
	}
	return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值