Fabled Rooks UVA - 11134 等效转换

传送门

题目大意:你的 任务是在一个n*n的棋盘上放置n个车,使n个车不能相互攻击(既都不同行也不同列),每个车都必须在一定的矩形范围内放置,输入四个值,分别为左上角和右下角的横纵坐标。按照输入顺序输出车的放置位置。

解题思路:

每个车的行和列没有 关系,也就可以分别讨论行和列。单独看行,就变成了一维问题,1-n范围内放置n个物品,每个物品都有自己的范围。贪心法。优先给结束早的区间安排位置即可。将横纵位置分别保存在新数组中,按照输出顺序保存。


AC代码:

#include <iostream>
#include <cstdio>
#include <algorithm>
#include <cstring>

using namespace std;

struct JU
{
	int num, l, r;
	bool operator< (JU a)const
	{
		if(this->r == a.r) return this->l < a.l;
		return this->r < a.r;
	}
}X[5050], Y[5050];
int cmp(JU x, JU y)
{
    if(x.r==y.r) return x.l<y.l;
    return x.r<y.r;
}


int A[5050], L[5050], R[5050];
int main()
{
	int n;
	while(scanf("%d", &n)!= EOF && n)
	{
		for(int i=0; i<n; i++)
		{
			scanf("%d%d%d%d", &X[i].l, &Y[i].l, &X[i].r, &Y[i].r);
			X[i].num = i;
			Y[i].num = i;
		}
		sort(X, X+n);
		memset(A, 0, sizeof(A));
		bool flag = true;
		for(int i=0; i<n; i++)
		{
			bool ok = 0;
			for(int j=X[i].l; j<= X[i].r; j++)
			{
				if(!A[j])
				{
					R[X[i].num] = j;
					A[j] = 1;
					ok = 1;
					break;
				}
			}
			if(!ok)
			{
				flag = false;
				break;
			}
		}
		sort(Y, Y+n);
		memset(A, 0, sizeof(A));
		for(int i=0; i<n; i++)
		{
			bool ok = 0;
			for(int j=Y[i].l; j<= Y[i].r; j++)
			{
				if(!A[j])
				{
					L[Y[i].num] = j;
					A[j] = 1;
					ok = 1;
					break;
				}
			}
			if(!ok)
			{
				flag = false;
				break;
			}
		}
		
		if(!flag) printf("IMPOSSIBLE\n");
		else 
		{
			for(int i=0; i<n; i++) printf("%d %d\n", R[i], L[i]);
		}
	}
	return 0;
} 


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值