机器学习
文章平均质量分 97
lcx_nanmu
这个作者很懒,什么都没留下…
展开
-
机器学习经典算法---支持向量机SVM
文章目录一、简介二、支持向量机原理1、间隔最大化和支持向量2、线性可分支持向量机原理推导对偶问题3、非线性支持向量机和核函数4、线性支持向量机(软间隔支持向量机)与松弛变量1、软间隔2、对偶问题三、SVM优缺点四、参考:一、简介支持向量机(support vector machines)是一种二分类模型,它的目的是寻找一个超平面来对样本进行分割,分割的原则是间隔最大化,最终转化为一个凸二次规划...原创 2020-05-01 23:44:33 · 906 阅读 · 0 评论 -
机器学习算法---条件随机场(Conditional Random Field,CRF)
目录为什么要引入条件随机场(CRF)?马尔科夫过程定义隐马尔科夫算法定义CRF的定义(以线性链条件随机场为例)参数化形式实现条件随机场预测问题的维特比算法参考为什么要引入条件随机场(CRF)?假设你有许多小明同学一天内不同时段的照片,从小明提裤子起床到脱裤子睡觉各个时间段都有(小明是照片控!)。现在的任务是对这些照片进行分类。比如有的照片是吃饭,那就给它打上吃饭的标签;有的照片是跑步时拍的,那...原创 2020-04-29 20:06:08 · 415 阅读 · 0 评论 -
机器学习经典算法---EM算法(一文秒懂极大释然估计和EM算法)
目录极大似然估计1.明确极大似然函数的目的2、通俗体现极大似然估计思想的例子案例一:案例二:总结:问题引入E步与M步参考:极大似然估计1.明确极大似然函数的目的随机变量的概率分布往往由少量的参数定义(也叫做有效统计量)只要计算出这些参数我们就确定了这个分布的情况极大似然估计就是用来估计这个参数的例如:二项分布:P(x)仅由由一个参数p决定,极大似然估计就要估计p正态分布:...原创 2020-04-26 23:36:22 · 1817 阅读 · 0 评论 -
机器学习经典算法---贝叶斯公式( bayes)
目录相关概念先验概率和后验概率贝叶斯决策理论贝叶斯公式朴素贝叶斯分类器5. 极值问题情况下的每个类的分类概率6. 下溢问题如何解决7. 零概率问题如何解决?相关概念先验概率和后验概率摘自百度百科:先验概率是指根据以往经验和分析得到的概率,如全概率公式,它往往作为"由因求果"问题中的"因"出现.后验概率是指依据得到"结果"信息所计算出的最有可能是那种事件发生,如贝叶斯公式中的,是"执果寻因...原创 2020-04-23 22:06:13 · 3289 阅读 · 0 评论 -
机器学习经典算法---线性回归(Linear Regression)算法
这里写自定义目录标题欢迎使用Markdown编辑器新的改变功能快捷键合理的创建标题,有助于目录的生成如何改变文本的样式插入链接与图片如何插入一段漂亮的代码片生成一个适合你的列表创建一个表格设定内容居中、居左、居右SmartyPants创建一个自定义列表如何创建一个注脚注释也是必不可少的KaTeX数学公式新的甘特图功能,丰富你的文章UML 图表FLowchart流程图导出与导入导出导入欢迎使用Ma...原创 2020-04-21 18:41:39 · 22460 阅读 · 2 评论