并行计算02-《cuda by examples》代码配置及julia例子

2 篇文章 0 订阅
2 篇文章 0 订阅

这里写图片描述

摘要:回忆VS的使用,把《cuda by examples》书的代码配置一下,使julian在CPU及GPU都跑起来, 对比GPU与CPU的编程的区别。

VS很久没用,用起有些不熟悉了,今天复习了一下VS的使用,练习一下把一些例子使用起来,记录一下。感觉一个技术如果不用,一段时间就可以忘记得一点印象都没有,这时就得回忆了,一边做一边回忆。

1. h文件

包的存放问题,本想创建一个文件夹来存放头文件的,把所有的头文件都copy过来了。可是后来发现这个只是把这个文件只是把它的路径引用来的,那个显示像文件夹的东西是一个过滤器来的。后在在目录下创建相关目录,把头文件放入去就可以。
这里写图片描述
这样:
这里写图片描述
这个是相对于项目demo_cuda的目录,引用时像例子所给的那样就可以用了。

#include "../common/book.h"
#include "../common/cpu_bitmap.h"

头文件配置好之后,编译就不会有问题了:

1>CUDACOMPILE : nvcc warning : The 'compute_20', 'sm_20', and 'sm_21' architectures are deprecated, and may be removed in a future release (Use -Wno-deprecated-gpu-targets to suppress warning).
1>CUDACOMPILE : nvcc warning : nvcc support for Microsoft Visual Studio 2010 and earlier has been deprecated and is no longer being maintained
1>  demo_julia.cu
1>  support for Microsoft Visual Studio 2010 has been deprecated!
1>
1>生成成功。
1>
1>已用时间 00:00:02.47
========== 生成: 成功 1 个,失败 0 个,最新 0 个,跳过 0 个 ==========

2. lib配置

当头文件解决了,到lib了,如果不配置会出现如下问题:
1>LINK : fatal error LNK1104: 无法打开文件“glut32.lib”
配置附加库目录
这里写图片描述
配置附加依赖项
这里写图片描述
注意了,如果glut32.lib少了后缀,再编译一下,再生成,会出现问题2:
1>LINK : fatal error LNK1104: 无法打开文件“glut32.obj”

问题3:1>LINK : fatal error LNK1123: 转换到 COFF 期间失败: 文件无效或损坏
这里写图片描述

3. julia例子

3.1 CPU
#include "../common/book.h"
#include "../common/cpu_bitmap.h"

#define DIM 1000

struct cuComplex {
    float   r;
    float   i;
    cuComplex( float a, float b ) : r(a), i(b)  {}
    float magnitude2( void ) { return r * r + i * i; }
    cuComplex operator*(const cuComplex& a) {
        return cuComplex(r*a.r - i*a.i, i*a.r + r*a.i);
    }
    cuComplex operator+(const cuComplex& a) {
        return cuComplex(r+a.r, i+a.i);
    }
};

int julia( int x, int y ) { 
    const float scale = 1.5;
    float jx = scale * (float)(DIM/2 - x)/(DIM/2);
    float jy = scale * (float)(DIM/2 - y)/(DIM/2);

    cuComplex c(-0.8, 0.156);
    cuComplex a(jx, jy);

    int i = 0;
    for (i=0; i<200; i++) {
        a = a * a + c;
        if (a.magnitude2() > 1000)
            return 0;
    }

    return 1;
}

void kernel( unsigned char *ptr ){
    for (int y=0; y<DIM; y++) {
        for (int x=0; x<DIM; x++) {
            int offset = x + y * DIM;

            int juliaValue = julia( x, y );
            ptr[offset*4 + 0] = 255 * juliaValue;
            ptr[offset*4 + 1] = 0;
            ptr[offset*4 + 2] = 0;
            ptr[offset*4 + 3] = 255;
        }
    }
 }

int main( void ) {
    CPUBitmap bitmap( DIM, DIM );
    unsigned char *ptr = bitmap.get_ptr();

    kernel( ptr );

    bitmap.display_and_exit();
}

3.2 GPU
#include "cuda_runtime.h"
#include "device_launch_parameters.h"

#include <stdio.h>

#include "../common/book.h"
#include "../common/cpu_bitmap.h"

#define DIM 1000

struct cuComplex {
    float   r;
    float   i;
    __device__ cuComplex( float a, float b ) : r(a), i(b)  {}
    __device__ float magnitude2( void ) {
        return r * r + i * i;
    }
    __device__ cuComplex operator*(const cuComplex& a) {
        return cuComplex(r*a.r - i*a.i, i*a.r + r*a.i);
    }
    __device__ cuComplex operator+(const cuComplex& a) {
        return cuComplex(r+a.r, i+a.i);
    }
};

__device__ int julia( int x, int y ) {
    const float scale = 1.5;
    float jx = scale * (float)(DIM/2 - x)/(DIM/2);
    float jy = scale * (float)(DIM/2 - y)/(DIM/2);

    cuComplex c(-0.8, 0.156);
    cuComplex a(jx, jy);

    int i = 0;
    for (i=0; i<200; i++) {
        a = a * a + c;
        if (a.magnitude2() > 1000)
            return 0;
    }

    return 1;
}

__global__ void kernel( unsigned char *ptr ) {
    // map from blockIdx to pixel position
    int x = blockIdx.x;
    int y = blockIdx.y;
    int offset = x + y * gridDim.x;

    // now calculate the value at that position
    int juliaValue = julia( x, y );
    ptr[offset*4 + 0] = 255 * juliaValue;
    ptr[offset*4 + 1] = 0;
    ptr[offset*4 + 2] = 0;
    ptr[offset*4 + 3] = 255;
}

// globals needed by the update routine
struct DataBlock {
    unsigned char   *dev_bitmap;
};

int main( void ) {
    DataBlock   data;
    CPUBitmap bitmap( DIM, DIM, &data );
    unsigned char    *dev_bitmap;

    HANDLE_ERROR( cudaMalloc( (void**)&dev_bitmap, bitmap.image_size() ) );
    data.dev_bitmap = dev_bitmap;

    dim3    grid(DIM,DIM);
    kernel<<<grid,1>>>( dev_bitmap );

    HANDLE_ERROR( cudaMemcpy( bitmap.get_ptr(), dev_bitmap,
                              bitmap.image_size(),
                              cudaMemcpyDeviceToHost ) );

    HANDLE_ERROR( cudaFree( dev_bitmap ) );

    bitmap.display_and_exit();
}

注意,GPU的代码下载包里的代码有些问题,要在cuComplex构造函数前加上device ,上面已经加上了。详细修改参见《CUDA BY EXAMPLES第4章代码错误解决方法》;
http://blog.csdn.net/chevroletss/article/details/48130953
对julia这个东西是什么,参见《再谈Julia集与Mandelbrot集》
http://www.matrix67.com/blog/archives/4570

4. 运行结果

这里写图片描述

【作者:happyprince, http://blog.csdn.net/ld326/article/details/78573914

imbalanced-learn是一个用于解决数据不平衡问题的Python库。下面是使用imbalanced-learn库的一个实际例子代码: ```python from imblearn.over_sampling import RandomOverSampler from imblearn.under_sampling import RandomUnderSampler from sklearn.datasets import make_classification from sklearn.model_selection import train_test_split from sklearn.svm import SVC from sklearn.metrics import accuracy_score # 创建一个不平衡的二分类数据集 X, y = make_classification(n_samples=1000, n_features=10, weights=[0.95, 0.05], random_state=42) # 将数据集分为训练集和测试集 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) # 显示训练集中的类别分布 print("训练集中各类别数量:", len(y_train)) print("训练集中类别1的数量:", sum(y_train == 1)) print("训练集中类别0的数量:", sum(y_train == 0)) # 使用RandomOverSampler进行过采样 over_sampler = RandomOverSampler(random_state=42) X_train_over, y_train_over = over_sampler.fit_sample(X_train, y_train) # 显示过采样后的训练集中的类别分布 print("过采样后的训练集各类别数量:", len(y_train_over)) print("过采样后的训练集类别1的数量:", sum(y_train_over == 1)) print("过采样后的训练集类别0的数量:", sum(y_train_over == 0)) # 使用RandomUnderSampler进行欠采样 under_sampler = RandomUnderSampler(random_state=42) X_train_under, y_train_under = under_sampler.fit_sample(X_train, y_train) # 显示欠采样后的训练集中的类别分布 print("欠采样后的训练集各类别数量:", len(y_train_under)) print("欠采样后的训练集类别1的数量:", sum(y_train_under == 1)) print("欠采样后的训练集类别0的数量:", sum(y_train_under == 0)) # 使用SVM进行训练和预测 svm = SVC(random_state=42) svm.fit(X_train_over, y_train_over) y_pred = svm.predict(X_test) # 计算预测准确率 accuracy = accuracy_score(y_test, y_pred) print("预测准确率:", accuracy) ``` 上述代码首先使用make_classification函数生成一个不平衡的二分类数据集,并将其分为训练集和测试集。然后,分别使用RandomOverSampler和RandomUnderSampler进行过采样和欠采样处理,得到过采样和欠采样后的训练集。接下来,使用SVM模型对过采样后的训练集进行训练,并在测试集上进行预测,最后计算预测准确率。通过这个例子,我们可以看到imbalanced-learn库可以很方便地解决数据不平衡问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值