[论文阅读笔记77]LoRA:Low-Rank Adaptation of Large Language Models

1. 基本信息

题目论文作者与单位来源年份
LoRA: Low-Rank Adaptation of Large Language ModelsmicrosoftInternational Conference on Learning Representations2021

524 Citations

论文链接:https://arxiv.org/pdf/2106.09685.pdf

论文代码:https://github.com/microsoft/LoRA

2. 要点

研究主题问题背景核心方法流程亮点数据集结论论文类型关键字
微调大模型对比较大的模型进行全部参数的微调显得不太可行,例如GPT-3 175B,每介任务都部署一个单独的GPT-3,这个显得十分的昂贵。提出Low-Rank Adaptation,LoRA.冻结了预先训练的模型权值,并将可训练的秩分解矩阵注入变压器架构的每一层,大大减少了下游任务的可训练参数的数量。效果与全参微调相当或比全参要好,并且没有推理延迟。LoRa

目的主要是不想微调模型的所有参数,去满足下游任务,因为这个成本太大的,特别是大模型例如175B的GPT-3;同时,这个方法也有人提出了相关的方法,可是这些方法存在问题,通过扩展模型的深度或减少模型的可用序列长度来实现存在推理延迟。最重要的是质量不太行呀。

启发于:学习到的过度参数化模型实际上存在于一个较低的intrinsic dimension(内在维度)上。即是训练下游任务不需要这么多参数,采用降秩的方法来保留最内在的参数。

Measuring the Intrinsic Dimension of Objective Landscapes, Intrinsic Dimensionality Explains the Effectiveness of Language Model Fine-Tuning. arXiv:2012.13255 [cs], December 2020.

优点:

只共享一个大模型,对于不同的任务,只训练不同的A,B.

训练更有效,训练参数少;

在推理方面,线性合并,没有推理延迟;

LoRA与许多先前的方法正交,可以与其中许多方法结合,比如前缀调优。

3. 模型(核心内容)

3.1 形式表达

pCmZfhQ.png

3.2 模型结构

pCmASwF.png

W0 + ∆W = W0 + *BA, 其中 *B:d*r, A:r*k, r << min(d, k).

在训练的时候W0的冻结的。

pCmmbYF.png

Transformer中,自关注力有4个矩阵,MLP模块有2个矩阵;

这里实验只关心自关注力相关的权重矩阵。

4. 实验与分析

对比实验

Fine-Tuning (FT):传统的微调。FT变体,只训练最后两层(FTTop2);

Bias-only or BitFit: 只训练bias vectors;

**Prefifix-embedding tuning (PreEmbed):**在输入标记中插入特殊的标记;

Prefix-layer tuning (PreLayer):是对前缀嵌入调优的扩展;

Adapter tuning:在自注意模块(和MLP模块)和后续的剩余连接之间插入适配器层;

Adapter_H:Houlsby et al. (2019) ;

Adapter_L:Lin et al. (2020)

Adapter_P: Pfeiffer et al. (2021),

**Adapter_***D: *AdapterDrop (R¨uckl′e et al., 2020)

所有模型,限制相关的参数大小规模Θ

pCmNA5d.png

结果:
pCmUnY9.png

pCmUgYj.png

pCmByJe.png

训练参数量与性能对比实验:

pCmanHS.png

对于GPT-3随着样本的增加的效果:

pCma6u6.png

5. 代码

https://github.com/microsoft/LoRA

6. 总结

从效果来看,不论预训练模型的大小,LoRA采用更少的参数,可以达到全参模型的更好的效果。

7. 知识整理(知识点,要读的文献,摘取原文)

通过更少的参数去适应下游任务,主要是两个方向(adapter, soft Prompt):

adding adapter layers,optimizing some forms of the input layer activations

The major downside of fine-tuning is that the new model contains as many parameters as in the original model.

微调的主要缺点是,新模型包含的参数与原始模型一样多。

8. 参考文献

made by happyprince

后续更新更多内容,请关注公众号“快乐王子AI说”。

<think>嗯,用户问的是在银行系统已经接入了DeepSeek模型的情况下,如何进一步用RAG和LoRA技术优化模型性能,并且要求接入部分的代码用Java写。首先,我需要确认自己对这两个技术的理解是否正确,然后再考虑如何在Java中实现。 首先,RAG是检索增强生成,结合了检索外部知识库和生成模型的能力。在银行场景中,可能需要实时查询金融产品信息、政策法规或者用户历史数据。所以,用户可能需要一个高效的检索系统,比如使用Elasticsearch或者向量数据库,然后结合生成模型来生成更准确的回答。 然后是LoRA,这是一种微调大模型的方法,通过低秩矩阵适应,可以在不改变原模型参数的情况下,用较小的参数量来调整模型行为。对于银行来说,可能需要在特定任务上微调模型,比如客服对话、风险评估等,同时保持模型原有的通用能力。 接下来,用户需要的是Java代码示例。不过,这里可能存在一些挑战,因为通常像LoRA这样的微调操作可能在Python中更常见,使用诸如Hugging Face的Transformers库。而Java在深度学习框架方面可能不如Python丰富,但仍有Deep Learning4J这样的库。不过,用户可能已经接入了DeepSeek模型,可能通过API或者某种服务的方式调用,所以实际代码可能需要结合REST API调用或者现有的Java库。 首先,关于RAG部分。在Java中,可能需要连接到一个检索系统,比如Elasticsearch,执行查询,获取相关文档,然后将这些文档作为上下文输入到DeepSeek模型中。这里需要处理检索、上下文拼接等步骤。代码示例可能包括使用Elasticsearch的Java客户端进行查询,然后构造包含上下文的请求体,发送到DeepSeek的API。 然后是LoRA部分。LoRA的实现通常涉及在模型训练时添加适配器层。如果在Java中进行微调,可能需要使用支持LoRA的库,但常见的实现可能更多在Python中。不过,用户可能已经有一个微调后的模型,通过API调用,所以在Java中可能只需要在调用模型时指定使用的LoRA适配器(比如传递一个适配器ID或名称参数)。或者,如果需要在客户端进行实时适配,这可能比较复杂,可能需要加载模型参数,这在Java中可能不太方便。所以可能的代码示例是调用已经部署好的带有LoRA适配器的模型服务,传递适配器参数。 不过,用户可能希望的是在现有系统中集成这两个技术,因此可能需要考虑如何在现有架构中添加检索步骤,以及如何调用带有LoRA适配器的模型。假设DeepSeek的API已经支持LoRA适配器,那么Java代码中可能需要添加相应的参数。 现在需要组织这些思路,给出结构化的回答,包括技术简介、优化场景、代码示例以及注意事项。需要注意代码示例可能需要简化,比如使用伪代码或假设的API调用方式,因为实际实现可能依赖具体的库或服务接口。 另外,用户可能是在银行的技术部门工作,需要确保代码的安全性和高效性,所以可能需要提到相关的最佳实践,比如缓存检索结果、微调时的数据隐私保护等。同时,可能要考虑性能问题,比如检索系统的响应时间,模型调用的延迟等。 总结一下,回答的结构应该是: 1. RAG和LoRA的简介及其在银行系统中的优化场景。 2. RAG的Java代码示例,包括检索部分和模型调用。 3. LoRA的Java代码示例,可能涉及调用带有适配器参数的模型API。 4. 注意事项,包括性能、安全、数据隐私等。 5. 结语,总结好处。 在编写代码示例时,可能需要假设使用某些库或框架,比如Elasticsearch的Java客户端,以及HTTP客户端发送请求到模型API。同时,需要确保代码示例简洁,符合Java的语法规范,并且适当添加注释。 最后,需要验证这些思路是否正确,是否有遗漏的关键点,比如RAG中上下文如何拼接,是否截断,如何处理检索失败的情况,或者LoRA适配器的具体调用方式等。可能需要进一步明确用户的具体需求,但根据问题描述,用户可能希望一个高层次的示例,所以保持代码示例的简洁和示范性是关键。</think>在银行系统中结合RAG与LoRA技术可显著提升AI模型的精准度和专业性。以下为技术简介及Java接入示例: --- ### **一、技术价值与场景** 1. **RAG(检索增强生成)** - **作用**:实时检索知识库补充上下文(如产品条款/风控规则) - **银行场景**:客户咨询应答、合规审查、风险预警 2. **LoRA(低秩适配微调)** - **作用**:低成本微调模型适配专业任务(参数更新量<1%) - **银行场景**:信贷报告生成、交易数据分析、个性化推荐 --- ### **二、Java代码实现示例** #### **1. RAG模块实现** ```java // 伪代码需替换实际SDK调用 public class RagService { // 检索知识库(示例:Elasticsearch) public List<Document> retrieveRelevantDocs(String query) { RestClient client = RestClient.builder( new HttpHost("es-host", 9200, "http")).build(); Request request = new Request("GET", "/knowledge_base/_search"); request.setJsonEntity("{ \"query\": { \"match\": { \"content\": \"" + query + "\" } } }"); Response response = client.performRequest(request); return parseDocuments(response.getEntity().getContent()); } // 拼接上下文调用DeepSeek public String generateWithRAG(String userQuery) { List<Document> docs = retrieveRelevantDocs(userQuery); String context = docs.stream().map(Document::getText).collect(Collectors.joining("\n")); String prompt = "基于以下信息回答问题:\n" + context + "\n\n问题:" + userQuery; return DeepSeekClient.generate(prompt); // 假设已有模型调用封装 } } ``` #### **2. LoRA适配调用** ```java // 假设模型服务支持LoRA适配器切换 public class LoraAdapterService { public String generateWithLora(String input, String adapterId) { JsonObject requestBody = new JsonObject(); requestBody.addProperty("input", input); requestBody.addProperty("adapter_id", adapterId); // 指定业务适配器(如loan_risk_v1) HttpResponse response = Unirest.post("https://api.deepseek.com/v1/generate")
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值