PPAD和PPA的提出——Papadimitriou, 1992,论文思路总结翻译

On the Complexity of the Parity Argument and Other Inefficient Proofs of Existence

Papadimitriou

Background:

只能输出yes或者no(做判定)的接收/拒绝图灵机是传统计算复杂性研究的重点,P和NP是此中最为经典的复杂性类;然而当我们考虑输出更加复杂的图灵机时,有一些类似的结构是值得注意的。例如,类似于P和NP,我们可以定义FP和FNP:
FP: a binary relation  P ( x , y )  is in FP s.t.  ∃  a DTM S, for any given  x , can find a  y  such that  P ( x , y )  Holds in Poly(|x|) time \text{FP: a binary relation $P(x,y)$ is in FP s.t. $\exists$ a DTM S, for any given $x$,} \\\text{can find a $y$ such that $P(x,y)$ Holds in Poly(|x|) time} FP: a binary relation P(x,y) is in FP s.t. ∃ a DTM S, for any given x,can find a y such that P(x,y) Holds in Poly(|x|) time

FNP: a binary relation  P ( x , y )  is in FP s.t.  ∃  a DTM S, for any given  x , y , can check if  P ( x , y )  Holds in Poly(|x|) time \text{FNP: a binary relation $P(x,y)$ is in FP s.t. $\exists$ a DTM S, for any given $x,y$,} \\\text{can check if $P(x,y)$ Holds in Poly(|x|) time} FNP: a binary relation P(x,y) is in FP s.t. ∃ a DTM S, for any given x,y,can check if P(x,y) Holds in Poly(|x|) time

然后,我们还可以定义TFNP。TFNP类与FNP略有区别,定义为所有多项式时间可验证的多值函数语言,也就意味着它保证了解一定存在。

显然,我们有FP ⊆ \subseteq TFNP ⊆ \subseteq FNP,但是我们既不知道FP是否=TFNP,也不知道TFNP是否等于FNP。

当我们希望解决计算复杂类的难题时,一个最常用的方法就是通过考虑complete的问题来抓住这个复杂度类的核心。然而,由于TFNP是个语义(semantic)类(对结果的数量存在某些定量要求),而这种复杂性类一般认为不存在complete的问题,因此我们也许应该考虑一些TFNP的非语义子类,以便进行complete属性的讨论。

语义类中的自然成员往往具有某些数学证明,以证明其在这个类中,在TFNP中就表现为证明某些问题确实至少有一个解。那么,我们就可以进一步地按照TFNP类的自然成员的证明方法对其进行分类。在组合优化问题中,我们常常使用二元性(duality)证明问题解的存在性。

在之前的文章中,我们已经定义了PLS这个复杂性类。PLS定义为一个组合优化问题——我们希望能够在图中找到一个局部极小值点。其存在性由定理:每个有向循环图都至少有一个聚点来保证。

那么,自然地,我们希望找到其他的存在性证明启发的TFNP的子类。在所有存在性问题中,我们最熟知的当属Brouwer不动点问题了——任意一个d维simplex上的变换f都会有一个不动点。当然,事实上在计算不动点时会有近似度 ϵ \epsilon ϵ,而我们希望这个问题BROUWER能够对d和-log ϵ \epsilon ϵ具有多项式时间复杂性。但事实上,在之前的论文中,我们说明了,如果把f看成一个谕示,那么在两个参数上,不动点的计算最坏情况下都有指数复杂度。这不是我们希望的结果,因此,在这篇文章中,我们会更换对f的定义方式,以得到更好的复杂性结果。

我们基于parity argument(握手定理)定义新复杂性类PPA(polynomial parity argument)。握手定理是非常常见也很基础的一个定理:每个有限图都有偶数个奇度顶点。这个定理的一个有趣推论是Smith定理:每个度数均奇的图都恰有偶数个哈密顿回路过同一条边。由此,我们可以定义SMITH问题:给定一个奇度图G和其中的一条哈密顿回路,求出另一条哈密顿回路。显然这个问题在TFNP中,但是事实上也可以囊括进我们定义的新的类中。

首先我们来看握手定理的一个推论:
如 果 一 个 图 中 每 个 顶 点 度 数 至 多 为 2 , 则 其 有 偶 数 个 叶 子 节 点 。 如果一个图中每个顶点度数至多为2,则其有偶数个叶子节点。 2
这个问题和SMITH很像,而且看起来是SMITH的一个特例。事实上,基于这个推论,我们又想到了Sperner引理:
如 果 我 们 对 一 个 三 角 剖 分 ( 注意,不要求是规则的三角剖分 ) 做 0 , 1 , 2 染 色 , 并 且 要 求 第 i 条 边 的 颜 色 中 不 能 出 现 ( 2 − i ) , 那 么 其 中 必 定 有 一 个 三 色 三 角 形 。 如果我们对一个三角剖分(\textbf{注意,不要求是规则的三角剖分})做0,1,2染色,\\并且要求第i条边的颜色中不能出现(2-i),那么其中必定有一个三色三角形。 注意,不要求是规则的三角剖分0,1,2i(2i)

  • 0
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值