前言:参考教材:《集合论与图论》第三版 屈婉玲,刘捍贫,刘田
第十一章 平面图
本章讨论的图均为平面图
11.1 平面图的基本概念
平面图:如果G可以以除了顶点处以外没有边相交的方式画在平面π上,则称之为可嵌入平面π;如果无向图G可以嵌入平面π,则称为(可)平面图;否则称为非平面图
约当曲线:自身不交的闭合曲线(始点和终点重合)
约当定理:如果L是一条约当曲线,平面的其余部分被L分为了两个部分,内部和外部,则连接L的内部点和外部点的任何曲线必定与L相交
Application:K_5和K_3,3不是平面图;包含约当曲线和内外点的图都不是平面图
Theorem:图G可以嵌入平面当且仅当可以嵌入球面
Proof:使用球极投影
面/边界/次数:如果平面图G将其所在的平面划分为若干个区域,则每个区域都称为G 第一个面;面积为无限的面称为无限面/外部面,记为R_0;面积有限的面称为有限面/内部面,记为R_1,…,R_k;包围每个面的所有边组成的回路组称为这个面的边界,边界的长度称为这个面的次数,记为deg®
(注:一个面的边界可能会非常复杂,尤其是外部面)
(注:显然,图G中面R的次数的最小值等于g(G)(围长))
Theorem:平面图G中所有面的次数之和等于边数m的二倍
Theorem:平面图G的某个平面嵌入的内部面必定存在另一个平面嵌入使其成为外部面
Proof:反球极投影->旋转->球极投影
极大平面图:设G为简单平面图,若在G的任意两个顶点之间增加一条边都会得到一个非平面图,则称G为极大平面图
Theorem:图G为极大平面图当且仅当G的各个面的次数均为3
Corollary:在n≥4阶的极大平面图中,δ(G)≥3
极小非平面图:在非平面图G中任意删除一条边均得到一个平面图,则称为极小非平面图
11.2 欧拉公式
Theorem:(Euler)对于任意的连通平面图G,有n-m+r=2,其中n,m,r分别为G的阶数,边数和面数
Corollary1:n-m+r=p+1(连通分支数)
Corollary2:如果G的各面的次数至少为l(经常取为围长),则G的边数m与n有以下关系:m(l-2)≤l(n-2)
Theorem:设G是n(n≥3)阶m条边的简单平面图,则m≤3n-6
Proof:分图中是否有圈进行讨论,如果有圈则l=3,使用Corollary2即可
Theorem:设G是n(n≥3)阶m条边的极大平面图,则m=3n-6
Corollary:设G是简单平面图,则G中必定存在一个点的度数小于等于5
11.3 平面图的判断
同胚:平面图G_1和G_2是同胚的,若其通过反复插入/删除二度顶点后两个图同构
Theorem:(Kuratowski)图G是平面图当且仅当G不含与K_5或K_3,3同胚的子图
Theorem:(Kuratowski)图G是平面图当且仅当G不含可以收缩(不限于二度顶点了)到K_5或K_3,3的子图
注:有时候一眼看出来K_3,3非常困难,这时候要注意一些特性,比如说某三个点的邻点集是否元素都是3
11.4 平面图的对偶图
对偶图:设G是平面图的某一个平面嵌入,则构造图G*如下:在图G的每个面中放置一个G*的顶点,每两个顶点连边当且仅当其所在的面共边界(注:如果G中一条边是桥的话,则G*中的对应边是一个环),称G*为G的对偶图
Property:(1)G*是平面图(通过构造看出) (2)G和G*中的桥和环互相对应
(3)G*是连通的 (4)同构的图的对偶图不一定同构
Theorem:如果G*是连通平面图G的对偶图,则n*=r,m*=m,r*=n;如果G有p个连通分支,则n*=r,m*=m,r*=n-p+1
Theorem:在G*的图形不改变的情况下,G**≌G当且仅当G是连通图
自对偶图:如果图G的对偶图G*和G同构,则称G为自对偶图
轮图:在(n-1)边形中心放一个和这(n-1)个顶点都连边的顶点,则称为一个轮图,记为W_n;该顶点称为轮心;n为奇数时称为奇阶轮图,n为偶数时称为偶阶轮图。
Corollary:n(n≥4)阶轮图必定是自对偶图
11.5 外平面图
外平面图:设G为一个平面图,若G中存在平面嵌入G‘,使得G中所有的顶点都在G‘的一个面的边界上,则称为外可平面图
极大外平面图:设G是简单外平面图,若对G中的任意两个不相邻的顶点u,v,在G中加入(u,v)后都不可外平面化,则称为极大外平面图
Theorem:所有顶点都在外部面边界上的n阶外可平面图是极大外平面图当且仅当其每个内部面的边界都是长为3的圈,外部面的边界是长为n的圈
Proof:相当有代表性,可以一试
Theorem:极大外平面图具有以下性质:(1)有(n-2)个内部面 (2)m=2n-3
(3)κ=2(点连通度) (4)至少有两个点的度数为2 (证明相当巧妙)
(5)至少有三个点的度数≤3
Theorem:一个图G是外平面图当且仅当G中不包含与K_4或者K_2,3同胚的子图
11.6 平面图与哈密顿图
托特图/莱德贝格图:对于Tait猜想:每个3-连通的3-正则平面图都是哈密顿图 的反驳
Theorem(Grinberg):设G是n阶简单平面图且为哈密顿图,C为G中一条哈密顿回路,r_i’,r_i’‘表示在C的内部/外部的次数为i的面数,则Σ(i-2)(r_i’-r_i’’)=0
Theorem:任何4-连通平面图都是哈密顿图
习题类型:
1.证明某个图是/不是平面图(构造/约当定理/使用库拉图夫斯基定理寻找图中和K3,3;K5同胚的子图)
2.使用平面图m≤3n-6的性质证明一些结论
3.画出所有6阶简单非同构的非平面图(在K3,3,K5的基础上加边)
4.涉及对偶图性质的一些比较困难的问题