Lecture 3 Large deviations bounds and applications
这一节主要讨论集中不等式,即随机变量偏离平均值的概率和程度。
三个越来越强的集中不等式
马尔科夫不等式
P r ( X ≥ k E [ X ] ) ≤ 1 k Pr(X\geq kE[X])\leq \frac{1}{k} Pr(X≥kE[X])≤k1
不过,想要导出 P r ( X < c E [ X ] ) Pr(X<cE[X]) Pr(X<cE[X])一类的不等式则是很难的,除非我们知道X有上界。例如,如果 X ∈ [ 0 , 1 ] X\in [0,1] X∈[0,1],那我们有 P [ X ≤ c E [ X ] ] ≤ 1 − μ 1 − c μ P[X\leq cE[X]]\leq \frac{1-\mu}{1-c\mu} P[X≤cE[X]]≤1−cμ1−μ
切比雪夫不等式
定义方差
V
a
r
(
X
)
=
E
(
X
−
E
X
)
2
=
σ
2
Var(X)=E(X-EX)^2=\sigma^2
Var(X)=E(X−EX)2=σ2,则:
P
r
(
∣
X
−
E
X
∣
≥
k
σ
)
≤
1
k
2
Pr(|X-EX|\geq k\sigma)\leq \frac{1}{k^2}
Pr(∣X−EX∣≥kσ)≤k21
用markov不等式即可证明切比雪夫不等式:只需代入
Y
=
∣
X
−
E
X
∣
2
Y=|X-EX|^2
Y=∣X−EX∣2即可。
例如:负载均衡问题
把m个球分给n个桶,记 X X X为第一个桶分到的球数,则 E X = m n EX=\frac{m}{n} EX=nm,那么有 P r ( X > 2 m n ) = P r ( ∣ X − m n ∣ > m n ) Pr(X>2\frac{m}{n})=Pr(|X-\frac{m}{n}|>\frac{m}{n}) Pr(X>2nm)=Pr(∣X−nm∣>nm).
记随机变量$Y_i=1 \text{ iff } 第 i 个球落在第一个桶,否则为 0 ,那么 第i个球落在第一个桶,否则为0,那么 第i个球落在第一个桶,否则为0,那么X=\sum_i Y_i , , ,EX^2=\sum_i EY_i^2+\sum_{i,j} E[Y_i Y_j] . 根据独立性, . 根据独立性, .根据独立性,E[Y_i Y_j]=E[Y_i]E[Y_j] , , ,EY_i=EY_i2=\frac{1}{n}$,从而综上有$EX2=\frac{m}{n}+\frac{m(m-1)}{n^2}\approx \frac{m}{n} ,代入切比雪夫不等式,有: ,代入切比雪夫不等式,有: ,代入切比雪夫不等式,有:Pr(|X-\frac{m}{n}|>\frac{m}{n})\leq \frac{n}{m}$
Large deviation bounds
根据著名的中心极限定理,在适当条件下,大量重复独立实验的结果分布最终会呈现为为正态分布:
设随机变量 X 1 , X 2 , ⋯ , X n X_1, X_2, \cdots, X_n X1,X2,⋯,Xn 独立同分布,且具有有限的数 学期望和方差 E ( X i ) = μ E\left(X_i\right)=\mu E(Xi)=μ , D ( X i ) = σ 2 ≠ 0 ( i = 1 , 2 , ⋯ , n ) D\left(X_i\right)=\sigma^2 \neq 0(i=1,2, \cdots, n) D(Xi)=σ2=0(i=1,2,⋯,n) 。记 X ˉ = 1 n ∑ i = 1 n X i , ζ n = X ˉ − μ σ / n \bar{X}=\frac{1}{n} \sum_{i=1}^n X_i , \zeta_n=\frac{\bar{X}-\mu}{\sigma / \sqrt{n}} Xˉ=n1∑i=1nXi,ζn=σ/nXˉ−μ ,则 ζ n → N ( 0 , 1 ) \zeta_n\rightarrow N(0,1) ζn→N(0,1).
Chernoff Bound(中心极限定理的量化版本)
If X 1 , X 2 , … , X n X_{1}, X_{2}, \ldots, X_{n} X1,X2,…,Xn are independent random variables and each X i ∈ [ − 1 , 1 ] X_{i} \in[-1,1] Xi∈[−1,1]. Let μ i = E [ X i ] \mu_{i}=E\left[X_{i}\right] μi=E[Xi] and σ i 2 = var [ X i ] \sigma_{i}^{2}=\operatorname{var}\left[X_{i}\right] σi2=var[Xi]. Then X = ∑ i X i X=\sum_{i} X_{i} X=∑iXi satisfies
Pr [ ∣ X − μ ∣ > k σ ] ≤ 2 exp ( − k 2 4 n ) \operatorname{Pr}[|X-\mu|>k \sigma] \leq 2 \exp \left(-\frac{k^{2}}{4 n}\right) Pr[∣X−μ∣>kσ]≤2exp(−4nk2)
where μ = ∑ i μ i \mu=\sum_{i} \mu_{i} μ=∑iμi and σ 2 = ∑ i σ i 2 \sigma^{2}=\sum_{i} \sigma_{i}^{2} σ2=∑iσi2
这个版本的证明比较复杂而且不算本质,我们只证下面这个二值变量的版本:
Let X 1 , X 2 , … , X n X_{1}, X_{2}, \ldots, X_{n} X1,X2,…,Xn be independent 0/1-valued random variables and let p i = E [ X i ] p_{i}=\mathbf{E}\left[X_{i}\right] pi=E[Xi], where 0 < p i < 1 0<p_{i}<1 0<pi<1. Then the sum X = ∑ i = 1 n X i X=\sum_{i=1}^{n} X_{i} X=∑i=1nXi, which has mean μ = ∑ i = 1 n p i \mu=\sum_{i=1}^{n} p_{i} μ=∑i=1npi, satisfies
Pr [ X ≥ ( 1 + δ ) μ ] ≤ ( c δ ) μ \operatorname{Pr}[X \geq(1+\delta) \mu] \leq\left(c_{\delta}\right)^{\mu} Pr[X≥(1+δ)μ]≤(cδ)μ
where c δ c_{\delta} cδ is shorthand for [ e δ ( 1 + δ ) ( 1 + δ ) ] \left[\frac{e^{\delta}}{(1+\delta)^{(1+\delta)}}\right] [(1+δ)(1+δ)eδ].
证明方法:指数矩法:
We introduce a positive dummy variable t t t and observe that
E [ exp ( t X ) ] = E [ exp ( t ∑ i X i ) ] = E [ ∏ i exp ( t X i ) ] = ∏ i E [ exp ( t X i ) ] \mathbf{E}[\exp (t X)]=\mathbf{E}\left[\exp \left(t \sum_{i} X_{i}\right)\right]=\mathbf{E}\left[\prod_{i} \exp \left(t X_{i}\right)\right]=\prod_{i} \mathbf{E}\left[\exp \left(t X_{i}\right)\right] E[exp(tX)]=E[exp(ti∑Xi)]=E[i∏exp(tXi)]=i∏E[exp(tXi)]
where the last equality holds because the X i X_{i} Xi r.v.s are independent. Now,
E [ exp ( t X i ) ] = ( 1 − p i ) + p i e t \mathbf{E}\left[\exp \left(t X_{i}\right)\right]=\left(1-p_{i}\right)+p_{i} e^{t} E[exp(tXi)]=(1−pi)+piet
therefore,
∏ i E [ exp ( t X i ) ] = ∏ i [ 1 + p i ( e t − 1 ) ] ≤ ∏ i exp ( p i ( e t − 1 ) ) = exp ( ∑ i p i ( e t − 1 ) ) = exp ( μ ( e t − 1 ) ) \begin{aligned} \prod_{i} \mathbf{E}\left[\exp \left(t X_{i}\right)\right]=\prod_{i}\left[1+p_{i}\left(e^{t}-1\right)\right] \leq \\ \prod_{i} \exp \left(p_{i}\left(e^{t}-1\right)\right) =\exp \left(\sum_{i} p_{i}\left(e^{t}-1\right)\right)=\exp \left(\mu\left(e^{t}-1\right)\right) \end{aligned} i∏E[exp(tXi)]=i∏[1+pi(et−1)]≤i∏exp(pi(et−1))=exp(i∑pi(et−1))=exp(μ(et−1))
as 1 + x ≤ e x 1+x \leq e^{x} 1+x≤ex. Finally, apply Markov’s inequality to the random variable exp ( t X ) \exp (t X) exp(tX), viz.
Pr [ X ≥ ( 1 + δ ) μ ] = Pr [ exp ( t X ) ≥ exp ( t ( 1 + δ ) μ ) ] ≤ E [ exp ( t X ) ] exp ( t ( 1 + δ ) μ ) = exp ( ( e t − 1 ) μ ) exp ( t ( 1 + δ ) μ ) \operatorname{Pr}[X \geq(1+\delta) \mu]=\operatorname{Pr}[\exp (t X) \geq \exp (t(1+\delta) \mu)] \\\leq \frac{\mathbf{E}[\exp (t X)]}{\exp (t(1+\delta) \mu)}=\frac{\exp \left(\left(e^{t}-1\right) \mu\right)}{\exp (t(1+\delta) \mu)} Pr[X≥(1+δ)μ]=Pr[exp(tX)≥exp(t(1+δ)μ)]≤exp(t(1+δ)μ)E[exp(tX)]=exp(t(1+δ)μ)exp((et−1)μ)
using lines (1) and (2) and the fact that t t t is positive. Since t t t is a dummy variable, we can choose any positive value we like for it. The right hand size is minimized if t = ln ( 1 + δ ) t=\ln (1+\delta) t=ln(1+δ)-just differentiate - and this leads to the theorem statement.
比起之前的两个集中不等式,Chernoff bound无疑是更强的,因为其给出的是指数量级的上界,而且根据中心极限定理,指数级的上界是最优的。
关于中位数
在均值之外,我们还想知道,给定[0,1]中的n个数字,我们能否通过部分采样来估计其中位数。
一个hardness的结果是:只用 o ( n ) o(n) o(n)个样本是不够的——我们至少不能在1.1倍内估计中位数。
考虑一个近似的概念:找一个至少大于和小于 n / 2 − n / t n/2-n/t n/2−n/t个数的数。思路是以一个给定大小随机采样,然后输出样本的中位数。
在基础课上我们都学过快速排序算法,它每次随机选取一个数作为pivot,然后把比它大/小的数排列到其两边。这个算法虽然期望是 O ( n log n ) O(n\log n) O(nlogn),但是由于两边的大小可能差异很大,导致最坏情况很差。一个更好的办法就是通过上面的近似方法选出一个近似中位数,以这个中位数为中心做快排。这个算法的运行时间就会非常接近 O ( n log n ) O(n\log n) O(nlogn)了。