TIDIGITS数据集介绍,官网编号LDC93S10

TIDIGITS数据集主要包含11个孤立数字,分别为one、two、three、four、five、six、seven、eight、nine、oh和zero。这个数据集通常用于语音识别和语音处理任务。

在数据准备阶段,需要建立任务语法,例如使用类似$digit= ( one | two | three | four | five |six | seven | eight | nine | zero | oh ); ([sil] <$digit sp> [sil])的语法描述。在这个语法中,|表示可选择的选项,尖括号< >表示一次或多次重复,中括号[ ]表示可选择的内容。

对于TIDIGITS数据集中的语音识别任务,HTK(Hidden Markov Model Toolkit)是一个常用的工具包。HTK识别器需要一个用Standard Lattice Format (SLF)建立的词的网络,该网络描述了词与词之间的转移。可以使用Hparse命令来创建这个词的网络,而digit.gram文件通常是手工编辑的。

 获取方法:

方法1:注册LDC账号并加入组织获取数据,官网链接:LDC官网

方法2:关注公众号,回复TIDIGITSLDC语料小助手icon-default.png?t=N7T8https://mp.weixin.qq.com/s/8GgZFh9XAr7FYwivQ_ajRg

### 多模态回归预测数据集 对于多模态回归预测的任务,存在多个常用的数据集可以支持机器学习的研究和发展。以下是几个典型的数据集: #### 1. NUS-WIDE 数据集 NUS-WIDE 是一个多标签图像数据库,包含了大约265,000张图片以及对应的文本描述。这个数据集非常适合用来探索图像和文本之间的关系,并可用于构建多模态的回归模型[^1]。 ```python import tensorflow as tf from tensorflow.keras.preprocessing.image import img_to_array, load_img # 加载并预处理单个样本作为例子 image_path = 'path/to/nus_wide/image.jpg' text_description = "example text description" img = load_img(image_path, target_size=(224, 224)) arr = img_to_array(img) print(f"Image shape: {arr.shape}") print(f"Text Description Length: {len(text_description)}") ``` #### 2. MS COCO (Microsoft Common Objects in Context) MS COCO 提供了大量的自然场景下的高质量标注图像及其详细的语义分割、目标检测框及文字说明。此数据集中丰富的信息使得其成为理想的多模态分析对象之一。 #### 3. VQA (Visual Question Answering) Dataset VQA 数据集不仅提供了大量的图像资源,还附带了针对这些图像的具体问题与答案对。这些问题往往涉及定量估计或属性判断等内容,因此特别适合开展多模态回归任务的研究[^3]. #### 4. TIDIGITS Database TIDIGITS 是一个语音识别领域内的经典数据集,其中含有说话者朗读数字串的声音文件连同相应的转录本。虽然主要用于音频处理方面的工作,但对于想要尝试跨媒体(比如声音-文本)之间建立联系的应用来说也是不错的选择。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值