网上的机器学习、深度学习资源分享



【深度学习】

coursera -- hinton

https://www.coursera.org/learn/neural-networks

stanford--cs224d

http://cs224d.stanford.edu/

CS231n: Convolutional Neural Networks for Visual Recognition

http://cs231n.stanford.edu/

udacity--deep learning

https://classroom.udacity.com/courses/ud730/lessons/6370362152/concepts/63798118150923

 

【机器学习、数据挖掘】

百度--机器学习课程:余凯、张潼

http://wenku.baidu.com/course/view/49e8b8f67c1cfad6195fa705  

加州理工学院公开课:机器学习与数据挖掘

http://open.163.com/special/opencourse/learningfromdata.html     

加州大学圣迭戈分校研究生课程《数据挖掘和预测分析》

http://cseweb.ucsd.edu/classes/fa15/cse255-a/    

Coursera:斯坦福大学Andrew Ng

http://open.163.com/special/opencourse/machinelearning.html

林轩田:機器學習技法 (Machine Learning Techniques)

http://v.youku.com/v_show/id_XOTAxMzE5NTE2.html?from=s1.8-1-2.999&f=23511418&sf=30804

林轩田:機器學習基石

http://v.youku.com/v_show/id_XODA3OTg5OTY4.html?from=s1.8-1-1.2

贝尔实验室  机器学习

http://video.chaoxing.com/serie_400004125.shtml

 

计算广告

斯坦福大学:MS&E 239: Introduction to Computational Advertising

http://www.stanford.edu/class/msande239/

计算广告学:刘鹏

http://study.163.com/course/introduction.htm?courseId=321007#/courseDetail

计算广告学概论:百度工程师讲解

http://wenku.baidu.com/course/view/6cef7f21af45b307e8719782

计算广告学之搜索引擎广告原理:戴文渊等

http://wenku.baidu.com/course/view/1a4bd4bbfd0a79563c1e728d    

 

其他

AlphaGo团队负责人David SilverUCLreinforcement learning课程

http://www0.cs.ucl.ac.uk/staff/d.silver/web/Teaching.html    

斯坦福大学自然语言处理

http://www.21edu8.com/university/open/22682/show.html?-0-0

斯坦福  信息检索和网页搜索 CS 276: Information Retrieval and Web Search

http://www.stanford.edu/class/cs276/

大规模分布式系统中的算法设计

http://wenku.baidu.com/course/view/9ec52f3f5727a5e9856a618c

百万级应用是怎样炼成的

 http://wenku.baidu.com/course/view/ddef4afe04a1b0717fd5dd06

推荐系统技术及其在电影推荐中的应用

http://wenku.baidu.com/course/view/98984531b90d6c85ec3ac68c


本文来自:  http://www.aitimes.win/a/webbase/html/2016/1021/618.html





评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值