计算广告学是一门正在兴起的分支学科,它涉及到大规模搜索和文本分析、信息获取、统计模型、机器学习、分类、优化以及微观经济学。计算广告学所面临的最主要挑战是在特定语境下特定用户和相应的广告之间找到“最佳匹配”。语境可以是用户在搜索引擎中输入的查询词(”Sponsored Search”),也可以是用户正在读的网页(”Content Match”以及”Display Ads”),还可以是用户正在看的电影,等等。而用户相关的信息可能非常多也可能非常少。潜在广告的数量可能达到几十亿。因此,取决于对“最佳匹配”的定义,面临的挑战可能导致在复杂约束条件下的大规模优化和搜索问题。
- 广告索引架构
- 广告匹配算法
- 广告排序算法
- 行为习惯广告
- 广告推荐算法
- Anti-fraud(反点击作弊)
- Ad Filtering(广告过滤)
- Haofen Wang, Yan Liang, Gui-Rong Xue, Linyun Fu and Yong YU. “Efficient Query Expansion for Advertisement Search” to appear in SIGIR 2009.
- Yifan Chen, Gui-Rong Xue, and Yong Yu, Advertising Keyword Suggestion Based On Concept Hierarchy, ACM WSDM 2008.
http://apex.sjtu.edu.cn/apex_wiki/CA
——————————————————————–
0. 综合
Yahoo Research:
http://research.yahoo.com/Computational_AdvertisingStart from here:
http://videolectures.net/kdd09_chakrabarti_agarwal_scca/1. 关键词抽取
2. 广告及页面分类和聚类
3. 广告质量评估Papers:
1. What Happens after an Ad Click? Quantifying the Impact of Landing Pages in Web Advertising (http://research.yahoo.com/pub/2872)Researchers: