在前面的章节我们讲到了素数的概念,今天我们来讲一下约数,约数又被称为因数。
质数只有两个因数:1和本身,如果除去这两个因数还有其他因数的数我们称之为合数。因此每一个大于1的自然数都至少有两个因数。在合数中,如果某一个因数是质数,我们则称这个质数因数为质因数(素因数或质因子)。把一个合数用质因数及其指数次幂相乘的形式表示出来,我们称之为分解质因数。
在给定的一组大于1的正整数(此处我们仅限在质数、合数中筛选)中,如果这组整数能够被同一个整数相整除,那么这个整数就是这组整数的公约数,不过此处还可以再次细分:
- 如果公约数只有1,我们将他们的关系定义为互质;
- 在一组整数的公约数中,最大的公约数我们称之为最大公约数。
和约数对应的是倍数,一个数的约数是有限的,但倍数却是无穷的。公倍数也是如此,在给定的一组整数中,最小的公倍数我们称之为最小公倍数。
我们先来看看编译结果:
一、这是筛选约数(因数)时编译后控制台输出的结果(我没有限制上限,并且使用的是大数值型,它将永久执行下去,因此我在这里只选取了20以内各个数字的约数):
2: 1 2
3: 1 3
4: 1 2 4
5: 1 5
6: 1 2 3 6
7: 1 7
8: 1 2 4 8
9: 1 3 9
10: 1 2 5 10
11: 1 11
12: 1 2 3 4 6 12
13: 1 13
14: 1 2 7 14
15: 1 3 5 15
16: 1 2 4 8 16
17: 1 17
18: 1 2 3 6 9 18
19: 1 19
20: 1 2 4 5 10 20
我们发现,质数只有2个因数,合数至少有三个因数。在合数的各个因数里面,本身是质数的因子我们称之为质因数(或者质因子),将一个合数分解为各个质因子的指数次幂相乘的方法叫做质数分解法,质数分解法在约分和通分、最小公倍数和最大公约数等许多领域都有广泛的应用。
二、这是筛选质因数时编译后控制台输出的结果(我没有限制上限,并且使用的是大数值型,它将永久执行下去,因此我在这里只选取了20以内各个数字的质因数):