数据结构与算法(1)——分解质因数及各种方法求最大公约数

本文介绍了如何使用Java进行质因数分解,并探讨了质因数分解法和辗转相除法在求解两个及多个数的最大公约数上的应用,附带完整Java代码示例。
摘要由CSDN通过智能技术生成

1.分解质因数
2.质因数分解法、辗转相除法求两个数的最大公约数
3.质因数分解法、辗转相除法求n个数的最大公约数

完整的Java代码如下:

package algorithm;

import java.util.ArrayList;

public class GreatestCommonDivisor {

    /**
     * @param args
     */
    public static void main(String[] args) {
        // TODO Auto-generated method stub
        GreatestCommonDivisor gcd = new GreatestCommonDivisor();
        int i = 6;
        int j = 66;
        gcd.prime(i);// 分解质因数
        gcd.prime(j);// 分解质因数
        gcd.GCD_prime(i, j);// 质因数分解法
        gcd.GCD_successive1(i, j);// 辗转相除法,递归算法
        gcd.GCD_successive2(i, j);// 辗转相除法,循环算法

        int[] num = { 24, 36, 48, 66};
        gcd.gcd_n(num);// //递归调用求两个数的最大公约数的方法来求n个数的最大公约数
    }

    /*
     * 求n个数的最大公约数
     */
    public int gcd_n(int[] num) {
        int gcd = num[0];
        System.out.println("num[0]:" + gcd);
        
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值