nyoj 214 单调递增子序列(二)(LIS - nlogn算法)

单调递增子序列(二)

时间限制:1000 ms  |  内存限制:65535 KB
难度:4

描述

给定一整型数列{a1,a2...,an}(0<n<=100000),找出单调递增最长子序列,并求出其长度。

如:1 9 10 5 11 2 13的最长单调递增子序列是1 9 10 11 13,长度为5。

输入

有多组测试数据(<=7)
每组测试数据的第一行是一个整数n表示序列中共有n个整数,随后的下一行里有n个整数,表示数列中的所有元素.每个整形数中间用空格间隔开(0<n<=100000)。
数据以EOF结束 。
输入数据保证合法(全为int型整数)!

输出

对于每组测试数据输出整形数列的最长递增子序列的长度,每个输出占一行。

样例输入

7
1 9 10 5 11 2 13
2
2 -1

样例输出

5
1

分析:本题数据量较大,需要用 nlogn算法来求LIS 。具体算法详解可以参照网上

AC代码:

#include<cstdio>
#include<cstring>
using namespace std;
const int maxn=100000+10;
int a[maxn];
int B[maxn];  //数组最终保存的是 长度为len的最小末尾 

int binary_search(int len,int i){
	int first=1,last=len;
	while(first<last){
		int mid=first+(last-first)/2;
		if(B[mid]>=a[i])last=mid;
		else first=mid+1;
	}
	return first;
}
int main(){
	int n;
	while(scanf("%d",&n)==1){
		for(int i=0;i<n;i++)
		scanf("%d",&a[i]);
		
		B[1]=a[0];
		int len=1;
		for(int i=1;i<n;i++){
			if(a[i]>B[len]){
				B[++len]=a[i]; 
			}
			else {
				int j=binary_search(len,i);
				B[j]=a[i];
			}
		}
		
		printf("%d\n",len);
	}
	return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

柏油

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值