单调递增子序列(二)
时间限制:1000 ms | 内存限制:65535 KB
难度:4
描述
给定一整型数列{a1,a2...,an}(0<n<=100000),找出单调递增最长子序列,并求出其长度。
如:1 9 10 5 11 2 13的最长单调递增子序列是1 9 10 11 13,长度为5。
输入
有多组测试数据(<=7)
每组测试数据的第一行是一个整数n表示序列中共有n个整数,随后的下一行里有n个整数,表示数列中的所有元素.每个整形数中间用空格间隔开(0<n<=100000)。
数据以EOF结束 。
输入数据保证合法(全为int型整数)!
输出
对于每组测试数据输出整形数列的最长递增子序列的长度,每个输出占一行。
样例输入
7 1 9 10 5 11 2 13 2 2 -1
样例输出
5 1
分析:本题数据量较大,需要用 nlogn算法来求LIS 。具体算法详解可以参照网上
AC代码:
#include<cstdio>
#include<cstring>
using namespace std;
const int maxn=100000+10;
int a[maxn];
int B[maxn]; //数组最终保存的是 长度为len的最小末尾
int binary_search(int len,int i){
int first=1,last=len;
while(first<last){
int mid=first+(last-first)/2;
if(B[mid]>=a[i])last=mid;
else first=mid+1;
}
return first;
}
int main(){
int n;
while(scanf("%d",&n)==1){
for(int i=0;i<n;i++)
scanf("%d",&a[i]);
B[1]=a[0];
int len=1;
for(int i=1;i<n;i++){
if(a[i]>B[len]){
B[++len]=a[i];
}
else {
int j=binary_search(len,i);
B[j]=a[i];
}
}
printf("%d\n",len);
}
return 0;
}