【开源】如何从零开发一个手机直播助手提供直播辅助

由于想要直播又不想露脸,所以想在抖音,快手尝试一下娱乐赛道,我看很多给别人测名字,手机号测评的。收益看着还不错,但是网上搜的程序都是电脑程序,电脑程序又需要电脑开播,电脑开播又需要电脑版本的抖音伴侣,电脑版本的直播伴侣又需要1000粉丝,无解了…

所以想着自己是程序员,在手机上开发一个html+js应用,然后封装为一个app 然后使用抖音或者快手就可以开直播,打开手游模式就可以投屏自己的手机直播出去了 下面是完整代码和效果图

第一步 : 使用html + js + vue开发网页应用 效果图如下 ;html代码参照gitee

在这里插入图片描述

<template>
  <div class="home">
    <!-- 顶部标题 -->
    <div class="title">
      <span class="gradient-text">娱乐直播助手</span>
    </div>
    
    <!-- 轮播图区域 -->
    <div class="banner" v-if="banners.length">
      <van-swipe :autoplay="3000" :height="bannerHeight" :show-indicators="true" :loop="true">
        <van-swipe-item 
          v-for="banner in banners" 
          :key="banner.id"
          @click="banner.link ? handleBannerClick(banner.link) : null"
        >
          <div class="banner-wrapper">
            <img :src="banner.picUrl" class="banner-image" alt="banner">
            <div class="banner-overlay"></div>
          </div>
        </van-swipe-item>
      </van-swipe>
    </div>

    <!-- 公告栏 -->
    <div class="notice-wrapper" v-if="notices.length">
      <van-notice-bar
        left-icon="volume-o"
        :scrollable="true"
        :text="formatNoticeText"
        background="#242424"
        color="#fff"
      >
        <template #left-icon>
          <van-icon name="volume-o" color="#FF3CAC" size="16"/>
        </template>
      </van-notice-bar>
    </div>
    
    <!-- 玩法列表 -->
    <div class="play-list">
      <div v-for="(item, index) in playList" 
           :key="item.key" 
           class="play-item"
           @click="handlePlayClick(item)">
        <div class="play-card" :class="{ 'disabled': item.enable !== 1 }">
          <div class="card-image">
            <template v-if="item.cover && item.enable === 1">
              <img :src="item.cover" :alt="item.name">
              <div class="image-overlay"></div>
            </template>
            <template v-else>
              <div class="placeholder-bg" :class="{ 'disabled-bg': item.enable !== 1 }">
                <span class="coming-soon-text">{{ item.enable !== 1 ? '敬请期待' : '即将上线' }}</span>
              </div>
            </template>
          </div>
          <div class="card-content">
            <div class="card-title" 
                 :style="{
                   backgroundImage: getNameColor(index),
                   '-webkit-background-clip': 'text',
                   'background-clip': 'text',
                   color: 'transparent'
                 }">
              {{ item.name }}
            </div>
            <div class="tag-container">
              <div v-for="(tag, tagIndex) in item.tag.split(',')"
                   :key="tagIndex"
                   class="custom-tag">
                {{ tag }}
              </div>
            </div>
          </div>
        </div>
      </div>
    </div>

第二步 :使用electron 将应用带包为安卓apk

const {app, BrowserWindow, ipcMain, Menu} = require('electron');
const path = require('path');

const os = require('os');



let mainWindow;



// 更新预设的手机分辨率
const phoneResolutions = [
    // iPhone 系列
    { label: 'iPhone SE (第一代)', width: 320, height: 568 },
    { label: 'iPhone SE (第二代)', width: 375, height: 667 },
    { label: 'iPhone 8', width: 375, height: 667 },
    { label: 'iPhone 8 Plus', width: 414, height: 736 },
    { label: 'iPhone X/XS', width: 375, height: 812 },
    { label: 'iPhone XR/11', width: 414, height: 896 },
    { label: 'iPhone 12/13 mini', width: 375, height: 812 },
    { label: 'iPhone 12/13/14', width: 390, height: 844 },
    { label: 'iPhone 12/13/14 Pro Max', width: 428, height: 926 },
    { label: 'iPhone 14 Pro', width: 393, height: 852 },
    
    // Android 系列
    { label: '小米 12', width: 393, height: 851 },
    { label: '小米 13', width: 412, height: 915 },
    { label: 'OPPO Find X5', width: 390, height: 844 },
    { label: '华为 P40 Pro', width: 396, height: 866 },
    { label: '三星 S21', width: 360, height: 800 },
    { label: '三星 S22 Ultra', width: 390, height: 844 },
    { label: 'Pixel 6', width: 412, height: 915 },
    { label: 'Pixel 7 Pro', width: 412, height: 892 },
    
    // 平板尺寸
    { label: 'iPad Mini', width: 768, height: 1024 },
    { label: 'iPad Air', width: 820, height: 1180 },
    { label: 'iPad Pro 11"', width: 834, height: 1194 },
    { label: 'iPad Pro 12.9"', width: 1024, height: 1366 }
];



function createWindow() {

    mainWindow = new BrowserWindow({

        width: 390,

        height: 844,

        webPreferences: {

            nodeIntegration: false,

            contextIsolation: true,

            preload: __dirname + '/preload.js'

        },

        icon: path.join(__dirname, 'static/applogo_256x256.ico'),

        title: '娱乐助手'

    });

    

    // 创建菜单模板
    const template = [
        {
            label: '返回主页',
            click: () => {
                mainWindow.loadURL('/');
            }
        },
        {
            label: '机型选择',
            submenu: phoneResolutions.map(resolution => ({
                label: `${resolution.label} (${resolution.width}x${resolution.height})`,
                click: () => {
                    mainWindow.setSize(resolution.width, resolution.height);
                    mainWindow.center();
                }
            }))
        },

打包上线

https://gitee.com/jimisun123/entertainment-live-assistant

<think>好的,我现在需要回答用户关于是否存在类似DeepSeek与摄像头交互的产品或开源项目的问题。用户是Java后端程序员,有一定前端基础,正在调研开发一个辅助盲人的实时对话系统。首先,我需要回想之前的对话内容,用户已经询问了所需技术,现在想知道是否有现成的类似方案。 首先,我应该考虑现有的商业产品和开源项目。商业产品方面,像微软的Seeing AI是一个明显的例子,它专门为视障人士设计,使用摄像头进行场景描述。还有Be My Eyes,虽然主要依赖志愿者,但结合AI后可能有类似功能。OrCam MyEye也是直接帮助视障人士的设备,可能符合用户的需求。 接下来是开源项目,可能需要查找GitHub上的相关项目。比如,OpenCV结合TensorFlow或PyTorch的物体检测项目,或者使用Whisper、Vosk进行语音识别的例子。Hugging Face可能有结合多模态模型的应用,如BLIP或LLaVA。这些项目虽然不完全是用户想要的,但可以作为基础进行修改。 然后,需要分析用户的需求核心:实时摄像头交互、多模态对话、无障碍设计。现有的产品可能在某个方面有优势,比如Seeing AI的场景描述,但可能没有DeepSeek的对话功能。开源项目则可能提供模块化的组件,用户需要自己集成和调整。 用户可能需要知道这些现有方案的优缺点,以及如何借鉴或集成到自己的项目中。例如,使用Seeing AI的部分设计思路,结合DeepSeek的API实现更自然的对话。同时,开源项目可以作为技术参考,帮助用户快速搭建基础功能,而不必从开始。 还需要考虑技术实现上的差异,比如现有的开源项目可能使用不同的AI模型,用户需要将其替换为DeepSeek的接口。此外,实时性和延迟是需要关注的问题,可能需要优化视频流处理和API调用的效率。 最后,应该总结现有资源和可能的路径,帮助用户决定是借鉴现有方案还是自行开发。同时提醒用户注意隐私和延迟等实际问题,确保项目可行性和实用性。</think>目前市场上已有部分类似功能的商业产品和开源项目,但具体实现方式和深度学习的结合程度各有不同。以下是详细对比分析: --- ### **一、成熟商业产品参考** #### 1. **微软Seeing AI**(最接近需求) - **功能**:实时摄像头扫描→描述场景/人脸/货币/文字 - **技术特点**: - 使用Azure Custom Vision定制图像识别模型 - 离线优先设计(隐私保护) - 定向语音提示("左前方3米有人站立") - **参考价值**:https://www.microsoft.com/en-us/ai/seeing-ai #### 2. **Be My Eyes + OpenAI**(多模态交互) - **功能**:志愿者协助+GPT-4V实时分析画面 - **技术架构**: ```mermaid graph LR 手机摄像头 --视频流--> OpenAI[GPT-4V] OpenAI --文本描述--> TTS[语音合成] TTS --> 用户 ``` - **局限**:依赖云端处理,延迟较高(平均2-3秒) #### 3. **OrCam MyEye**(硬件级方案) - **特性**:可穿戴设备,实时OCR和物体识别 - **技术栈**: - 嵌入式ARM处理器 - 定制轻量化YOLO模型 - 骨传导音频输出 - **官网**:https://www.orcam.com/ --- ### **二、开源项目资源** #### 1. **视觉-语言多模态项目** - **BLIP-2**(Hugging Face) - 支持图像描述生成和问答 - 可本地部署(需至少16GB显存) ```python from transformers import Blip2Processor, Blip2ForConditionalGeneration processor = Blip2Processor.from_pretrained("Salesforce/blip2-opt-2.7b") model = Blip2ForConditionalGeneration.from_pretrained("Salesforce/blip2-opt-2.7b") ``` - **LLaVA**(视觉助手) - 结合CLIP视觉编码器和Vicuna语言模型 - 项目地址:https://github.com/haotian-liu/LLaVA #### 2. **实时视频处理框架** - **MediaPipe**(Google开源) - 提供即用型物体检测、姿态估计pipeline - Java/Kotlin支持示例: ```java // Android摄像头接入示例 CameraInput cameraInput = new CameraInput(this); cameraInput.setNewFrameListener(textureFrame -> { Bitmap bitmap = textureFrame.getBitmap(); // 发送到推理模型 }); ``` - **OpenCV Zoo**(预训练模型库) - 包含人脸识别、文字检测等现成模型 - 部署文档:https://github.com/opencv/opencv_zoo #### 3. **语音交互方案** - **Rhasspy**(离线智能家居助手) - 集成ASR/TTS和意图识别 - 支持自定义唤醒词 - 项目地址:https://rhasspy.readthedocs.io/ --- ### **三、可复用代码片段** #### 1. **实时视频流+GPT-4V交互**(Python示例) ```python import cv2 import openai def analyze_frame(frame): _, img_bytes = cv2.imencode('.jpg', frame) response = openai.ChatCompletion.create( model="gpt-4-vision-preview", messages=[{ "role": "user", "content": [ {"type": "text", "text": "描述当前画面并指出潜在危险"}, {"type": "image_url", "image_url": f"data:image/jpeg;base64,{base64.b64encode(img_bytes).decode()}"} ] }] ) return response.choices[0].message.content # 主循环中调用 while cap.isOpened(): ret, frame = cap.read() description = analyze_frame(frame) text_to_speech(description) # 接入TTS引擎 ``` #### 2. **Android摄像头连续捕获**(Java示例) ```java public class CameraActivity extends AppCompatActivity implements CameraBridgeViewBase.CvCameraViewListener2 { private CameraBridgeViewBase mOpenCvCameraView; @Override public Mat onCameraFrame(CameraBridgeViewBase.CvCameraViewFrame inputFrame) { Mat rgba = inputFrame.rgba(); // 每30帧处理一次(约1秒) if (frameCount % 30 == 0) { new AsyncTask<Mat, Void, String>() { protected String doInBackground(Mat... frames) { return DeepSeekAPI.analyze(frames[0]); } protected void onPostExecute(String result) { speak(result); // 调用TTS } }.execute(rgba.clone()); } return rgba; } } ``` --- ### **四、关键差异与改进空间** 1. **现有方案不足**: - 商业产品封闭性强,无法接入DeepSeek模型 - 开源项目多为单点技术(仅视觉或仅语音) - 缺乏完整的"感知-分析-对话"闭环 2. **您的创新点建议**: - **情境化对话**:结合地理位置和用户历史偏好(如"您常走的XX路当前施工") - **多传感器融合**:加入IMU数据判断用户姿态(上楼梯时增加安全提醒频率) - **渐进式细节**:优先播报关键信息(障碍物),再补充环境描述 建议以Seeing AI为交互设计参考,结合DeepSeek的对话优势,采用Rhasspy+MediaPipe构建基础框架,逐步替换为自研模块。可以先fork类似项目(如LLaVA)在其基础上修改视觉编码器接入DeepSeek API。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值