毫秒级检测!你见过带GPU加速的树莓派吗?

上海站 | 高性能计算之GPU CUDA培训

4月13-15日
三天密集式学习  快速带你晋级
阅读全文
>


正文共13130个字,5张图,预计阅读时间33分钟。


树莓派3B+英特尔神经计算棒进行高速目标检测


NCS Pi


代码:
训练数据预处理:
https://gist.github.com/ahangchen/ae1b7562c1f93fdad1de58020e94fbdf


测试:https://github.com/ahangchen/ncs_detection

Star是一种美德。


background


最近在做一个项目,要在树莓派上分析视频中的图片,检测目标,统计目标个数,这是一张样例图片


Cattle Counting


Motivation


当下效果最好的目标检测都是基于神经网络来做的,包括faster rcnn, ssd, yolo2等等,要在树莓派这种资源紧张的设备上运行检测模型,首先想到的就是用最轻量的MobileNet SSD,使用Tensorflow object detection api实现的MobileNet SSD虽然已经非常轻,但在树莓派上推导一张1280x720的图仍然需要2秒,有兴趣的同学可以参考这两个项目:


  • armv7版Tensorflow(必须是1.4及以上):https://github.com/lhelontra/tensorflow-on-arm/releases

  • Tensorflow Object detection API: https://github.com/tensorflow/models/tree/master/research/object_detection


具体的操作在Tensorflow文档里都说的很清楚了,在树莓派上的操作也是一样的,有问题可以评论区讨论。


Hardware


极限的模型仍然不能满足性能需求,就需要请出我们今天的主角了,Intel Movidius Neural Computing Stick。


Intel Movidius Neural Computing Stick


处理器Intel Movidius VPU
支持框架TensorFlow, Caffe
连接方式USB 3.0 Type-A
尺寸USB stick (72.5mm X 27mm X 14mm)
工作温度0° - 40° C



x86_64 Ubuntu 16.04主机

Raspberry Pi 3B  Stretch desktop

Ubuntu 16.04 虚拟机
系统要求USB 2.0 以上 (推荐 USB 3.0)

1GB 内存

4GB 存储



实际上这不是一个GPU,而是一个专用计算芯片,但能起到类似GPU对神经网络运算的加速作用。


京东上搜名字可以买到,只要500元左右,想想一块GPU都要几千块钱,就会觉得很值了。


SDK是开源的:https://github.com/movidius/ncsdk

提问不在GitHub issue里,而是在一个专门的论坛:https://ncsforum.movidius.com/


虽然目前NCSDK支持的框架包含Tensorflow和Caffe,但并不是支持所有的模型,目前已支持的模型列表可以在这里查到:https://github.com/movidius/ncsdk/releases


截止到2018年3月15日,NCSDK还没有支持Tensorflow版的MobileNet SSD(比如tf.cast这个操作还未被支持),所以我们需要用Caffe来训练模型,部署到树莓派上。


Environment


ncsdk的环境分为两部分,训练端和测试端。


1、训练端通常是一个Ubuntu 带GPU主机,训练Caffe或TensorFlow模型,编译成NCS可以执行的graph;


2、测试端则面向ncs python mvnc api编程,可以运行在树莓派上raspbian stretch版本,也可以运行在训练端这种机器上。


训练端

安装

安装这个过程,说难不难,也就几行命令的事情,但也有很多坑在训练端主机上,插入神经计算棒,然后:


git clone https://github.com/movidius/ncsdk

cd ncsdk make install


其中,make install干的是这些事情:


  • 检查安装Tensorflow

  • 检查安装Caffe(SSD-caffe)

  • 编译安装ncsdk(不包含inference模块,只包含mvNCCompile相关模块,用来将Caffe或Tensorflow模型转成NCS graph的)


注意,


  • 这些库都是安装到/opt/movidius/这个目录下,并关联到系统python3里边的(/usr/bin/python3),如果你电脑里原来有tf或caffe,也不会被关联上去

  • NCSDK mvNCCompile模块目前只兼容python3,我尝试过将安装完的SDK改成兼容python2的版本,可以将模型编译出来,但是在运行时会报错,所以暂时放弃兼容python2了,也建议大家用默认的python3版本

  • 这个步骤主要的坑来自万恶的Caffe,如果你装过python3版的caffe,大概会有经验一些,这里有几个小坑提示一下:

    • 最好在ncsdk目录中的ncsdk.conf中,开启caffe的cuda支持,即设置CAFFE_USE_CUDA=yes,这样你之后也能用这个caffe来训练模型

    • caffe的依赖会在脚本中安装,但有些Debian兼容问题要解决

    • 开启CUDA支持后,编译caffe会找不到libboost-python3,因为在Ubuntu16.04里,它叫libboost-python3.5,所以要软链接一下:


cd /usr/lib/x86_64-linux-gnu/

sudo ln -s libboost_python-py35.so libboost_python3.so


  • 其他可能出现的caffe的坑,可以在我博客找找答案,如果没有的话,就去caffe的GitHub issue搜吧

测试


一波操作之后,我们装好了ncsdk编译模块,可以下载我训练的caffe模型,尝试编译成ncs graph


git clone https://github.com/ahangchen/MobileNetSSD mvNCCompile example/MobileNetSSD_deploy.prototxt -w MobileNetSSD_deploy.caffemodel -s 12 -is 300 300 -o ncs_mobilenet_ssd_graph


这里其实是调用python3去执行/usr/local/bin/ncsdk/mvNCCompile.py这个文件, 不出意外在当前版本(1.12.00)你会遇到这个错误:


[Error 17] Toolkit Error: Internal Error: Could not build graph. Missing link: conv11_mbox_conf


这是因为NCSDK在处理caffe模型的时候,会把conv11_mbox_conf_new节点叫做conv11_mbox_conf,所以build graph的时候就会找不着。因此需要为这种节点起一个别名,即,将conv11_mbox_conf_new起别名为conv11_mbox_conf,修改SDK代码中的/usr/local/bin/ncsdk/Models/NetworkStage.py,在第85行后面添加:


if ''_new' in name:    self.alias.append(name[:-4])


于是就能编译生成graph了,你会看到一个名为ncs_mobilenet_ssd_graph的文件。


上边这个bug我已经跟NCSDK的工程师讲了,他们在跟进修这个bug:

NCS bug


测试端

NCSDK

测试端要安装ncsdk python api,用于inference,实际上测试端能做的操作,训练端也都能做


git clone https://github.com/movidius/ncsdk

cd api/src 

make install


从输出日志可以发现,将ncsdk的lib和include文件分别和系统的python2(/usr/bin/python2)和python3(/usr/bin/python3)做了关联。


然后你可以下一个GitHub工程来跑一些测试:


git clone https://github.com/movidius/ncappzoo

cd ncappzoo/apps/hello_ncs_py python3 hello_ncs.py python2 hello_ncs.py


没报错就是装好了,测试端很简单。


openCV


看pyimagesearch这个教程(https://www.pyimagesearch.com/2017/09/04/raspbian-stretch-install-opencv-3-python-on-your-raspberry-pi/)


Caffe模型训练


就是正常的用caffe训练MobileNet-SSD,主要参考这个仓库:


MobileNet-SSD: https://github.com/chuanqi305/MobileNet-SSD


README里将步骤讲得很清楚了


1、下载SSD-caffe(这个我们已经在NCSDK里装了)


2、下载chuanqi在VOC0712上预训练的模型


3、把MobileNet-SSD这个项目放到SSD-Caffe的examples目录下,这一步可以不做,但是要对应修改train.sh里的caffe目录位置


4、创建你自己的labelmap.prototxt,放到MobileNet-SSD目录下,比如说,你是在coco预训练模型上训练的话,可以把coco的标签文件复制过来,将其中与你的目标类(比如我的目标类是Cattle)相近的类(比如Coco中是Cow)改成对应的名字,并用它的label作为你的目标类的label。


(比如我用21这个类代表Cattle)


1、用你自己的数据训练MobileNet-SSD,参考SSD-caffe的wiki,主要思路还是把你的数据转换成类似VOC或者COCO的格式,然后生成lmdb,坑也挺多的:


假设你的打的标签是这样一个文件raw_label.txt,假装我们数据集只有两张图片:


data/strange_animal/1017.jpg 0.487500   0.320675    0.670000    0.433193 data/strange_animal/1018.jpg 0.215000   0.293952    0.617500    0.481013


我们的目标是将标签中涉及的图片和位置信息转成这样一个目录(在ssd-caffe/data/coco目录基础上生成的):


coco_cattle

├── all # 存放全部图片和xml标签文件 │   ├── 1017.jpg

│   ├── 1017.xml

│   ├── 1018.jpg

│   └── 1018.xml

├── Annotations # 存放全部标签xml

│   ├── 1017.xml

│   └── 1018.xml

├── create_data.sh # 将图片转为lmdb的脚本 ├── create_list.py # 根据ImageSets里的数据集划分文件,生成jpg和xml的对应关系文件到coco_cattle目录下,但我发现这个对应关系文件用不上 ├── images  # 存放全部图片 │   ├── 1017.jpg

│   └── 1018.jpg

├── ImageSets # 划分训练集,验证集和测试集等,如果只想分训练和验证的话,可以把minival.txt,testdev.txt,test.txt内容改成一样的 │   ├── minival.txt

│   ├── testdev.txt

│   ├── test.txt

│   └── train.txt

├── labelmap_coco.prototxt # 如前所述的标签文件,改一下可以放到MobileNet-SSD目录下 ├── labels.txt

├── lmdb # 手动创建这个目录 │   ├── coco_cattle_minival_lmdb # 自动创建的,由图片和标签转换来的LMDB文件 │   ├── coco_cattle_testdev_lmdb

│   ├── coco_cattle_test_lmdb

│   └── coco_cattle_train_lmdb

├── minival.log

├── README.md

├── testdev.log

├── test.log

└── train.log


其中,标签xml的格式如下:


<annotation>  

<folder>train</folder>  

<filename>86</filename>  

<source>    

<database>coco_cattle</database>  

</source>  

<size>    

<width>720</width>    

<height>1280</height>    

<depth>3</depth>  

</size>  

<segmented>0</segmented>  

<object>   

 <name>21</name>    

<pose>Unspecified</pose>    

<truncated>0</truncated>    

<difficult>0</difficult>   

 <bndbox>      

<xmin>169</xmin>      

<ymin>388</ymin>      

<xmax>372</xmax>      

<ymax>559</ymax>    

</bndbox>  </object> 

  <object>    

 <name>21</name>    

<pose>Unspecified</pose>   

 <truncated>0</truncated>    

<difficult>0</difficult>    

<bndbox>      

<xmin>169</xmin>      

<ymin>388</ymin>      

<xmax>372</xmax>     

 <ymax>559</ymax>    

</bndbox>

 </object></annotation>


代表一张图中多个对象所在位置(bndbox节点表示),以及类别(name)。


一开始,all, Annotations, images, ImageSets,lmdb四个目录都是空的,你可以把自己的图片放到随便哪个地方,只要在raw_label.txt里写好图片路径就行。


读取raw_label.txt,利用lxml构造一棵dom tree,然后写到Annotations对应的xml里,并将对应的图片移动到image目录里,可以参考这份代码。并根据我们设置的train or not标志符将当前这张图片分配到训练集或测试集中(也就是往ImageSet/train.txt中写对应的图片名)


这样一波操作之后,我们的images和Annotations目录里都会有数据了,接下来我们需要把它们一块复制到all目录下


cp images/* all/

cp Annotations/* all/


然后用create_data.sh将all中的数据,根据ImageSet中的数据集划分,创建训练集和测试集的lmdb,这里对coco的create_data.sh做了一点修改:


cur_dir=$(cd $( dirname ${BASH_SOURCE[0]} ) && pwd ) root_dir=$cur_dir/../..

cd $root_dir


redo=true

# 这里改成all目录

data_root_dir="$cur_dir/all"

# 这里改成自己的数据集名,也是我们这个目录的名字

dataset_name="coco_cattle"

# 指定标签文件mapfile="$root_dir/data/$dataset_name/labelmap_coco.prototxt"

anno_type="detection"

label_type="xml"

db="lmdb"

min_dim=0 max_dim=0 width=0 height=0

extra_cmd="--encode-type=jpg --encoded"

if $redo

then  extra_cmd="$extra_cmd --redo"

fi

for subset in minival testdev train test

do python3 $root_dir/scripts/create_annoset.py --anno-type=$anno_type --label-type=$label_type --label-map-file=$mapfile --min-dim=$min_dim --max-dim=$max_dim --resize-width=$width --resize-height=$height --check-label $extra_cmd $data_root_dir $root_dir/data/$dataset_name/ImageSets/$subset.txt $data_root_dir/../$db/$dataset_name"_"$subset"_"$db examples/$dataset_name 2>&1 | tee $root_dir/data/$dataset_name/$subset.logd

one


于是会lmdb目录下会为每个划分集合创建一个目录,存放数据


├── lmdb

│   ├── coco_cattle_minival_lmdb

│   │   ├── data.mdb

│   │   └── lock.mdb

│   ├── coco_cattle_testdev_lmdb

│   │   ├── data.mdb

│   │   └── lock.mdb

│   ├── coco_cattle_test_lmdb

│   │   ├── data.mdb

│   │   └── lock.mdb

│   └── coco_cattle_train_lmdb

│       ├── data.mdb

│       └── lock.mdb


6、将5生成的lmdb链接到MobileNet-SSD的目录下:


cd MobileNet-SSD ln -s PATH_TO_YOUR_TRAIN_LMDB trainval_lmdb ln -s PATH_TO_YOUR_TEST_LMDB test_lmdb


7、运行gen_model.sh生成三个prototxt(train, test, deploy)


# 默认clone下来的目录是没有example这个目录的,而gen_model.sh又会把文件生成到example目录

mkdir example ./gen_model.sh


8、训练


./train.sh


这里如果爆显存了,可以到example/MobileNetSSD_train.prototxt修改batch size,假如你batch size改到20,刚好可以吃满GTX1060的6G显存,但是跑到一定步数(设置在solver_test.prototxt里的test_interval变量),会执行另一个小batch的test(这个batch size定义在example/MobileNetSSD_test.prototxt里),这样就会再爆显存,所以如果你的train_batch_size + test_batch_size <= 20的话才可以保证你在6G显存上能顺利完成训练,我的设置是train_batch_size=16, test_batch_size=4


一开始的training loss可能比较大,30左右,等到loss下降到2.x一段时间就可以ctrl+c退出训练了,模型权重会自动保存在snapshot目录下


9、运行merge_bn.py将训练得到的模型去除bn层,得到可部署的Caffe模型,这样你就能得到一个名为MobileNetSSD_deploy.caffemodel的权重文件,对应的prototxt为example/MobileNetSSD_deploy.prototxt


10、离题那么久,终于来到主题,我们要把这个caffemodel编译成NCS可运行的graph,这个操作之前在搭环境的部分也提过:


mvNCCompile example/MobileNetSSD_deploy.prototxt -w MobileNetSSD_deploy.caffemodel -s 12 -is 300 300 -o ncs_mobilenet_ssd_graph


参数格式:


mvNCCompile prototxt路径 -w 权重文件路径 -s 最大支持的NCS数目 -is 输入图片宽度 输入图片高度 -o 输出graph路径


其实训练端相对于chuanqi的MobileNet-SSD没啥改动,甚至训练参数也不用怎么改动,主要工作还是在数据预处理上,可以参考我的预处理代码(https://gist.github.com/ahangchen/ae1b7562c1f93fdad1de58020e94fbdf)


树莓派NCS模型测试


现在我们要用ncs版的ssd模型在树莓派上进行对图片做检测,这个目标一旦达成我们自然也能对视频或摄像头数据进行检测了。


仓库结构


ncs_detection

├── data # 标签文件 │   └── mscoco_label_map.pbtxt

├── file_helper.py # 文件操作辅助函数 ├── model # 训练好的模型放在这里 │   ├── ncs_mobilenet_ssd_graph

│   └── README.md

├── ncs_detection.py # 主入口 ├── object_detection # 改了一下TF的Object detection包中的工具类来用 │   ├── __init__.py

│   ├── protos

│   │   ├── __init__.py

│   │   ├── string_int_label_map_pb2.py

│   │   └── string_int_label_map.proto

│   └── utils

│       ├── __init__.py

│       ├── label_map_util.py

│       └── visualization_utils.py

├── r10 # 图片数据 │   ├── 00000120.jpg

│   ├── 00000133.jpg

│   ├── 00000160.jpg

│   ├── 00000172.jpg

│   ├── 00000192.jpg

│   ├── 00000204.jpg

│   ├── 00000220.jpg

│   └── 00000236.jpg

├── README.md

└── total_cnt.txt


由于这个工程一开始是用Tensorflow Object Detection API做的,所以改了其中的几个文件来读标签和画检测框,将其中跟tf相关的代码去掉。


TF的图片IO是用pillow做的,在树莓派上速度奇慢,对一张1280x720的图使用Image的get_data这个函数获取数据需要7秒,所以我改成了OpenCV来做IO。


任务目标


检测r10目录中的图片中的对象,标记出来,存到r10_tmp目录里。


流程

准备目标目录


def config_init(dataset_pref):    os.system('mkdir %s_tmp' % dataset_pref)    os.system('rm %s_tmp/*' % dataset_pref)


指定模型路径,标签位置,类别总数,测试图片路径


PATH_TO_CKPT = 'model/ncs_mobilenet_ssd_graph

'PATH_TO_LABELS = os.path.join('data', 'mscoco_label_map.pbtxt') NUM_CLASSES = 81TEST_IMAGE_PATHS = [os.path.join(img_dir, '%08d.jpg' % i)

for i in range(start_index, end_index)]


发现并尝试打开神经计算棒


def ncs_prepare():    print("[INFO] finding NCS devices...")    devices = mvnc.EnumerateDevices()  

 if len(devices) == 0:        print("[INFO] No devices found. Please plug in a NCS")        quit()    print("[INFO] found {} devices. device0 will be used. "          "opening device0...".format(len(devices)))    device = mvnc.Device(devices[0])    device.OpenDevice()  

 return device


将NCS模型加载到NCS中


def graph_prepare(PATH_TO_CKPT, device):    print("[INFO] loading the graph file into RPi memory...")    

with open(PATH_TO_CKPT, mode="rb") as f:        graph_in_memory = f.read()    


# load the graph into the NCS    print("[INFO] allocating the graph on the NCS...")    detection_graph = device.AllocateGraph(graph_in_memory)    

return detection_graph


准备好标签与类名对应关系

category_index = label_prepare(PATH_TO_LABELS, NUM_CLASSES)

读取图片,由于Caffe训练图片采用的通道顺序是RGB,而OpenCV模型通道顺序是BGR,需要转换一下。


image_np = cv2.imread(image_path) image_np = cv2.cvtColor(image_np, cv2.COLOR_BGR2RGB)


使用NCS模型为输入图片推断目标位置


def predict(image, graph):    image = preprocess_image(image)    graph.LoadTensor(image, None)    (output, _) = graph.GetResult()    num_valid_boxes = output[0]    predictions = []    for box_index in range(num_valid_boxes):        base_index = 7 + box_index * 7        if (not np.isfinite(output[base_index]) or                not np.isfinite(output[base_index + 1]) or                not np.isfinite(output[base_index + 2]) or                not np.isfinite(output[base_index + 3]) or                not np.isfinite(output[base_index + 4]) or                not np.isfinite(output[base_index + 5]) or                not np.isfinite(output[base_index + 6])):          


 continue        (h, w) = image.shape[:2]        x1 = max(0, output[base_index + 3])        y1 = max(0, output[base_index + 4])        x2 = min(w, output[base_index + 5])        y2 = min(h, output[base_index + 6])        pred_class = int(output[base_index + 1]) + 1        pred_conf = output[base_index + 2]        pred_boxpts = (y1, x1, y2, x2)        prediction = (pred_class, pred_conf, pred_boxpts)        predictions.append(prediction)    return predictions


其中,首先将图片处理为Caffe输入格式,缩放到300x300,减均值,缩放到0-1范围,转浮点数:


def preprocess_image(input_image):    

PREPROCESS_DIMS = (300, 300)    

preprocessed = cv2.resize(input_image, PREPROCESS_DIMS)    

preprocessed = preprocessed - 127.5    

preprocessed = preprocessed * 0.007843    

preprocessed = preprocessed.astype(np.float16)    

return preprocessed


graph推断得到目标位置,类别,分数


graph.LoadTensor(image, None) (output, _) = graph.GetResult()


其中的output格式为,


[    

目标数量,    

class,score,xmin, ymin, xmax, ymax,    

class,score,xmin, ymin, xmax, ymax,    .

.. ]


根据我们感兴趣的类别和分数进行过滤:


def predict_filter(predictions, score_thresh):    num = 0    boxes = list()    scores = list()    classes = list()  

 for (i, pred) in enumerate(predictions):        (cl, score, box) = pred        

if cl == 21 or cl == 45 or cl == 19 or cl == 76 or cl == 546 or cl == 32:          

 if score > score_thresh:                boxes.append(box)                scores.append(score)                classes.append(cl)                num += 1    return num, boxes, classes, scores


用OpenCV将当前图片的对象数量写到图片右上角,用pillow(tf库中的实现)将当前图片的对象位置和类别在图中标出:


def add_str_on_img(image, total_cnt):    cv2.putText(image, '%d' % total_cnt, (image.shape[1] - 100, 50), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), 2)


result = vis_util.visualize_boxes_and_labels_on_image_array(                image_np,                np.squeeze(valid_boxes).reshape(num, 4),                np.squeeze(valid_classes).astype(np.int32).reshape(num, ),                np.squeeze(valid_scores).reshape(num, ),                category_index,                use_normalized_coordinates=True,                min_score_thresh=score_thresh,                line_thickness=8)


保存图片:


cv2.imwrite('%s_tmp/%s' % (dataset_pref, image_path.split('/')[-1]),                        cv2.cvtColor(result, cv2.COLOR_RGB2BGR))


释放神经计算棒:


def ncs_clean(detection_graph, device):    

detection_graph.DeallocateGraph()    

device.CloseDevice

()


运行


python2 ncs_detection.py


结果


框架图片数量/张耗时
TensorFlow180060min
NCS180010min
TensorFlow12sec
NCS10.3sec


性能提升6倍!单张图300毫秒,可以说是毫秒级检测了。在论坛上有霓虹国的同行尝试后,甚至评价其为“超爆速”。


扩展


单根NCS一次只能运行一个模型,但是我们可以用多根NCS,多线程做检测,达到更高的速度,具体可以看Reference第二条。


Reference


https://www.pyimagesearch.com/2018/02/19/real-time-object-detection-on-the-raspberry-pi-with-the-movidius-ncs/


https://qiita.com/PINTO/items/b97b3334ed452cb555e2


看了这么久,还不快去给我的GitHub(https://github.com/ahangchen/ncs_detection)点star!


原文链接:https://www.jianshu.com/p/3e9862a55e43


查阅更为简洁方便的分类文章以及最新的课程、产品信息,请移步至全新呈现的“LeadAI学院官网”:

www.leadai.org


请关注人工智能LeadAI公众号,查看更多专业文章

大家都在看

LSTM模型在问答系统中的应用

基于TensorFlow的神经网络解决用户流失概览问题

最全常见算法工程师面试题目整理(一)

最全常见算法工程师面试题目整理(二)

TensorFlow从1到2 | 第三章 深度学习革命的开端:卷积神经网络

装饰器 | Python高级编程

今天不如来复习下Python基础

  • 5
    点赞
  • 39
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值