树莓派 5 AI 套件(Hailo)示例

### 安装配置Hailo-8硬件加速器以部署YOLOv8s #### 准备工作 为了确保能够在树莓派5上成功安装并配置Hailo-8硬件加速器,需要先确认设备已经具备必要的环境条件。这包括但不限于操作系统版本、Python解释器以及相关依赖库的准备。 #### 环境搭建 建议的操作系统为Raspberry Pi OS (64-bit),因为该平台提供了更好的性能支持和更广泛的软件兼容性[^1]。对于编程语言的选择,推荐使用Python 3.x系列作为主要开发工具,并通过pip管理所需的第三方包。 #### Hailo驱动程序安装 访问官方文档获取最新的Linux发行版下的Hailo SDK安装指南,按照指示完成驱动程序的下载与设置过程。此步骤至关重要,它决定了后续能否顺利加载模型文件到Hailo芯片中执行推理操作。 #### YOLOv8s模型移植 考虑到原始YOLO架构可能并不完全适用于嵌入式环境中高效运行的要求,在实际应用前通常还需要对预训练好的权重参数做适当调整优化。具体做法可以参照社区分享的经验案例来进行针对性修改。 #### 测试验证 当一切准备工作就绪之后,可以通过编写简单的测试脚本来检验整个系统的功能是否正常运作。下面给出了一段用于调用摄像头捕捉图像并通过已部署的YOLOv8s模型实现物体识别的基础代码示例: ```python from hailo_platform import HEF, VDevice, InferVStreamsParams, InputVStreamInfo, OutputVStreamInfo import cv2 import numpy as np def preprocess_image(image_path): img = cv2.imread(image_path) resized_img = cv2.resize(img, (640, 640)) normalized_img = resized_img / 255.0 transposed_img = np.transpose(normalized_img, axes=[2, 0, 1]) batched_img = np.expand_dims(transposed_img, axis=0).astype(np.float32) return batched_img hef = HEF('path_to_your.hef') with VDevice() as device: infer_params = InferVStreamsParams( input_vstreams_info=(InputVStreamInfo(name='input_tensor'),), output_vstreams_info=tuple(OutputVStreamInfo(name=name) for name in hef.get_output_names()) ) with device.infer(hef, infer_params=infer_params) as infer_pipeline: image_data = preprocess_image('/path/to/image.jpg') # 替换为自己的图片路径 results = infer_pipeline.infer({'input_tensor': image_data}) # 处理返回的结果... ```
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值