构建并用 TensorFlow Serving 部署 Wide & Deep 模型

上海站 | 高性能计算之GPU CUDA培训

4月13-15日
三天密集式学习  快速带你晋级
阅读全文
>


正文共6912个字,4张图,预计阅读时间18分钟。


Wide & Deep 模型是谷歌在 2016 年发表的论文中所提到的模型。在论文中,谷歌将 LR 模型与 深度神经网络 结合在一起作为 Google Play  的推荐获得了一定的效果。在这篇论文后,Youtube,美团等公司也进行了相应的尝试并公开了他们的工作(相关链接请看本文底部)


官方提供的 Wide & Deep 模型的(简称,WD 模型)教程 都是使用 TensorFlow (简称,TF )自带的函数来做的特征工程,并且模型也进行了封装,但有时候我们的特征工程还使用到了 sklearn, numpy, pandas 来做,当我们想快速验证 WD 模型是否比旧模型要好的时候则显得不太便利,所以本文就向您展示了如何自己用 TF 搭建一个结构清晰,定制性更高的 WD 模型。在训练好 WD 模型后,我们还需要快速的看到模型预测的效果,所以在本文中我们利用 Docker 来快速部署一个可供服务的 TensorFlow 模型,也即可提供服务的 API。


因此,本文的内容如下:


  • 使用 TF 搭建 WD 网络结构

  • 使用 Docker 来快速部署模型


其对应的代码地址为:https://github.com/edvardHua/Articles
欢迎 star。


本文实现的 WD 模型的结构如下图所示:

本文构建的网络


不难看出,Wide 模型这边其实就是一个 LR 模型,而右边 Deep 模型的部分则是一个三层隐藏层的神经网络,这三层隐藏层的神经元数目分别是 256-12-64,最后 Wide 模型 和 Deep 模型的结果进行相加后通过 ReLu 激活函数后输出预测结果。OK,先来看一下 Wide 模型部分的代码:


def wide_model(input_data):    

"""    

一层的神经网络,相当于是 LR    

:param input_data:   

 :return:    

"""    

input_len = int(input_data.shape[1])    

with tf.name_scope("wide"):        

# 修正的方式初始化权重,输出层结点只有一个        

weights = tf.Variable(tf.truncated_normal([input_len, 1],                                                  

stddev=1.0 / math.sqrt(float(input_len))                                                  

), name="weights"                              

)        

output = tf.matmul(input_data, weights)        

# 沿着行这个纬度来求和        

output = tf.reduce_sum(output, 1, name="reduce_sum")        

# 输出每个样本经过计算的值        

output = tf.reshape(output, [-1, 1])  

 return output


接下来看一下 Deep 模型的代码。


def deep_model(input_data, hidden1_units, hidden2_units, hidden3_units):   

 """   

 三层的神经网络   

 :param input_data: 2-D tensor    

:param hidden1_units: int    

:param hidden2_units: int    

:param hidden3_units: int    

:return:   

 """   

 # 得到每个样本的维度   

 input_len = int(input_data.shape[1])    

with tf.name_scope("hidden1"):        

# 修正的方式初始化权重        weights = tf.Variable(tf.truncated_normal([input_len, hidden1_units],                                                  stddev=1.0 / math.sqrt(float(input_len))                                                  ), name="weights1"                             

 )        

biases = tf.Variable(tf.zeros([hidden1_units]), name='biases1')        

hidden1 = tf.nn.relu(tf.matmul(input_data, weights)) + biases    ···    

# 另外两层隐藏层代码相似,所以这里省略掉,具体的代码请看 Github 仓库    ···    

with tf.name_scope("output"):        

# 修正的方式初始化权重        weights = tf.Variable(tf.truncated_normal([hidden3_units, 1],                                                  stddev=1.0 / math.sqrt(float(input_len))                                                  

), name="weights4"                             

 )        

biases = tf.Variable(tf.zeros([1]), name='biases4')        

output = tf.nn.relu(tf.matmul(hidden3, weights) + biases)

   return tf.nn.relu(output)


虽然 Deep 模型的代码存在一定的冗余,但是这样方便我们修改和调整网络的结构。


最后,将 Wide 模型 和 Deep 模型的结果进行相加后通过 ReLu 激活函数输出预测的结果。


def build_wdl(deep_input, wide_input, y):    

"""    

得到模型和损失函数    

:param deep_input:    

:param wide_input:   

 :param y:    

:return:    

"""    

central_bias = tf.Variable([np.random.randn()], name="central_bias")    

dmodel = deep_model(deep_input, 256, 128, 64)    

wmodel = wide_model(wide_input)    

# 使用 LR 将两个模型组合在一起    

dmodel_weight = tf.Variable(tf.truncated_normal([1, 1]), name="dmodel_weight")   

 wmodel_weight = tf.Variable(tf.truncated_normal([1, 1]), name="wmodel_weight")    

network = tf.add(        

tf.matmul(dmodel, dmodel_weight),        

tf.matmul(wmodel, wmodel_weight)    

)    

prediction = tf.nn.sigmoid(tf.add(network, central_bias), name="prediction")    

loss = tf.reduce_mean(       

 tf.nn.sigmoid_cross_entropy_with_logits(labels=y, logits=prediction)    )   

 train_step = tf.train.AdamOptimizer(0.001).minimize(loss)    

return

train_step, loss, prediction


搭建好结构后,我们可以生成一些随机数据来测试 Wide & Deep 模型,在这里我们随机生成 1000 个样本,每个样本的维度为 10,作为训练样本,为了简单起见,没有再创建验证样本。


训练只迭代一次,也即只遍历一次训练样本,这里的每个样本的 label 取值都为 0 或 1,所以目标函数为交叉熵,代码如下:


def build_and_saved_wdl():    

"""    

训练并保存模型    

:return:    

"""    

# 训练数据    

x_deep_data = np.random.rand(10000)    

x_deep_data = x_deep_data.reshape(-1, 10)   

 x_wide_data = np.random.rand(10000)    

x_wide_data = x_wide_data.reshape(-1, 10)    

x_deep = tf.placeholder(tf.float32, [None, 10])    

x_wide = tf.placeholder(tf.float32, [None, 10])    

y = tf.placeholder(tf.float32, [None, 1])    

y_data = np.array(       

 [random.randint(0, 1) for i in range(1000)]   

 )    

y_data = y_data.reshape(-1, 1)    

# 为了简单起见,这里没有验证集,也就没有验证集的 loss    

train_step, loss, prediction = build_wdl(x_deep, x_wide, y)    

sess = tf.Session()    

sess.run(tf.global_variables_initializer())    

sess.run(train_step, feed_dict={x_deep: x_deep_data, x_wide:x_wide_data, y: y_data})


训练完成后,还需要将模型进行保存,若要在 TensorFlow Serving 中使用,则需要用 SavedModelBuilder 来保存模型,代码如下:


def build_and_saved_wdl():  

 ···   

# 将训练好的模型保存在当前的文件夹下   

builder = tf.saved_model.builder.SavedModelBuilder(join("./model_name", MODEL_VERSION))   inputs = {       

"x_wide": tf.saved_model.utils.build_tensor_info(x_wide),       

"x_deep": tf.saved_model.utils.build_tensor_info(x_deep)   }   

output = {"output": tf.saved_model.utils.build_tensor_info(prediction)}   

prediction_signature = tf.saved_model.signature_def_utils.build_signature_def(      

 inputs=inputs,       

outputs=output,       method_name=tf.saved_model.signature_constants.PREDICT_METHOD_NAME   )   builder.add_meta_graph_and_variables(      

 sess,      

 [tf.saved_model.tag_constants.SERVING],       {tf.saved_model.signature_constants.DEFAULT_SERVING_SIGNATURE_DEF_KEY: prediction_signature}  

 )

  builder.save()


这里需要注意的是 MODEL_VERSION 必须为数字(代表着模型的版本),TF Serving 默认只会加载数字最大的那个模型,譬如说在这里我们执行完代码后,保存模型的 model_name 的文件夹的目录如下:


λ root [tf_demo/servering/model_name] → tree 

└── 1    

├── saved_model.pb    

└── variables        

├── variables.data-00000-of-00001        

└── variables.index 2 directories, 3 files


保存完模型后,在这里我们使用容器来部署模型,当然你也可以选择自己在机器上配置相关的环境,我们使用的镜像是由 Bitnami 提供的(Dockerhub 的地址请戳这里),当你需要部署模型时,只需要将模型所在的路径映射到容器中的 /bitnami/model-data 路径下即可,也即是键入如下命令


λ edvard [tf_demo/servering/model_name] → docker run -it -p 5000:9000 --volume /root/tf_demo/servering/model_name:/bitnami/model-data bitnami/tensorflow-serving 


 Welcome to the Bitnami tensorflow-serving container 

 ... 

 2017-11-01 03:43:55.983106: I tensorflow_serving/core/loader_harness.cc:86] Successfully loaded servable version {name: inception version: 1} 

2017-11-01 03:43:55.986130: I tensorflow_serving/model_servers/main.cc:288] Running ModelServer at 0.0.0.0:9000 ...


这里可能需要一些 Docker 相关的知识,我在参考资料中提供了一份很不错的 Gitbook 入门书籍,感兴趣的可以看看。


我们将容器中的服务映射到了宿主机的 5000 端口,接下来我们来测试一下 API 接口。代码如下:


def test_servable_api():    """    测试 API    :return:    """    # 随机产生 10 条测试数据    x_deep_data = np.random.rand(100).reshape(-1, 10)    x_wide_data = np.random.rand(100).reshape(-1, 10)    channel = implementations.insecure_channel('127.0.0.1', int(5000))    stub = prediction_service_pb2.beta_create_PredictionService_stub(channel)    

# 发送请求    request = predict_pb2.PredictRequest()    request.model_spec.name = 'inception'    request.model_spec.signature_name = tf.saved_model.signature_constants.DEFAULT_SERVING_SIGNATURE_DEF_KEY    request.inputs[INPUT_WIDE_KEY].CopyFrom(        tf.contrib.util.make_tensor_proto(x_wide_data, shape=[10, WIDE_DIM], dtype=tf.float32))    request.inputs[INPUT_DEEP_KEY].CopyFrom(        tf.contrib.util.make_tensor_proto(x_deep_data, shape=[10, DEEP_DIM], dtype=tf.float32))    

# 10 秒超时    res = stub.Predict(request, 10.0)    pprint(res.outputs[OUTPUT_KEY])


输出的预测结果的结构如下:


dtype: DT_FLOAT tensor_shape {  dim {    size: 10  }  dim {    size: 1  } } float_val: 0.355874538422 float_val: 0.3225004673 float_val: 0.32104665041 float_val: 0.233089879155 float_val: 0.376621931791 float_val: 0.144557282329 float_val: 0.34686845541 float_val: 0.304817527533 float_val: 0.367866277695 float_val: 0.393035560846


参考资料:


谷歌 Wide & Deep 论文(https://link.jianshu.com?t=https://research.google.com/pubs/pub45413.html)

Youtube 深度推荐的论文(https://link.jianshu.com?t=https://research.google.com/pubs/pub45530.html)

美团点评深度排序技术文章(https://link.jianshu.com?t=https://tech.meituan.com/dl.html)

Docker 从入门到实践(Gitbook)(https://link.jianshu.com?t=https://yeasy.gitbooks.io/docker_practice/content/container/run.html)


原文链接:https://www.jianshu.com/p/2fffd0e332bc


查阅更为简洁方便的分类文章以及最新的课程、产品信息,请移步至全新呈现的“LeadAI学院官网”:

www.leadai.org


请关注人工智能LeadAI公众号,查看更多专业文章

大家都在看

LSTM模型在问答系统中的应用

基于TensorFlow的神经网络解决用户流失概览问题

最全常见算法工程师面试题目整理(一)

最全常见算法工程师面试题目整理(二)

TensorFlow从1到2 | 第三章 深度学习革命的开端:卷积神经网络

装饰器 | Python高级编程

今天不如来复习下Python基础

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值