数钱记

毕业收拾东西,发现平时挂着的小口袋里攒了好多硬币,于是打算拿去超市换点钞票~

其中还发现俩一分钱~

突发奇想,于是本着科学严谨的态度把硬币按年份分了类

从左到右依次为

 2012  2011  2010  2009  2008  2007  2006  2005 

也就是说2011年的一角硬币最多,有两摞

从左到右依次为

   2013  2012  2011  2010  2009  2008    2006  2005  2004

也就是说2011年的五角硬币最多,而2007年是没有的

于是乎,做了一个表格

 总和2013201220112010200920082007200620052004
五角62472511620313
一角13807622911531290
可以得出以下结论:

1.  从2007年开始至2011年,国家投放的人民币逐年翻倍;

2.  2011年通货膨胀应该是非常严重的一年(假设2013年投放的钱还木有流通开)

3.  钱神马的最不靠谱了~~

4.  我真无聊

5.  攒了4年,还不到50块啊我去。。。(穷鬼= =)


以上纯属娱乐,如有雷同纯属巧合。


内容概要:本文详细介绍了一个基于黏菌优化算法(SMA)优化的Transformer-LSTM组合模型在多变量回归预测中的完整项目实例。项目通过融合Transformer的全局特征提取能力与LSTM的局部时序建模优势,构建层次化混合模型,并引入SMA算法实现超参自动寻优,提升模型性能与泛化能力。项目涵盖据预处理、模型设计、训练优化、结果评估、GUI可视化界面开发及工程化部署全流程,配套完整代码与目录结构设计,支持端到端自动化建模与跨平台应用。; 适合人群:具备一定机器学习和深度学习基础,熟悉Python编程与PyTorch框架,从事据科学、人工智能研发或工程落地的相关技术人员,尤其是工作1-3年希望提升模型自动化与实战能力的研发人员。; 使用场景及目标:①应用于智能制造、金融风控、智慧医疗、能源管理、气象预测、智能交通等多变量时间序列预测场景;②掌握Transformer与LSTM融合建模方法;③学习SMA等群体智能算法在深度学习超参优化中的实际应用;④实现从据处理到模型部署的全流程自动化开发。; 阅读建议:建议结合文档中的代码示例与GUI实现部分动手实践,重点关注模型架构设计、SMA优化机制和训练流程细节,配合可视化分析深入理解模型行为。同时可扩展尝试不同据集和优化算法,提升对复杂时序预测任务的综合把控能力。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值