在技术领域,尤其是近年来兴起的LLM(大型语言模型)方向,在入门门槛较传统NLP(自然语言处理)有所降低,但工作的技术含量,往往取决于你的思维方式与执行方法。
我以大型模型微调的几个关键环节为例来探讨几种不同的做法,虽然它们可能都能实现最终目标,甚至在模型效果上相差不多,但对细节的把控确大有不同,这就反应了所谓的技术含量。
数据处理环节
方法一:直接沿用同事或实验室之前的训练数据,未经检查便投入训练。
方法二:下载开源数据集,人工针对几类不同的数据编写system语句,构建“system + query + answer”的训练数据。
方法三:掌握GPT喜爱的提示词(prompt),利用GPT生成标准格式的数据,并致力于扩充提示词的任务和表达多样性,甚至添加噪声提示词以提高抗噪性。使用大模型之间相互检查的方法来提高数据质量。
方法四:根据业务埋点数据收集真实问题与回答,通过规则或GPT分析用户反馈,以获取高质量真实的训练数据。
方法五:借鉴CoT、RAG、function_call、Agent等思路,将复杂任务在数据层面进行拆解,例如将“长文本摘要”转变为“长文本每章摘要,再基于每章摘要写长文本摘要”。
……
模型训练环节
方法一:直接使用Github中下载下来的代码,仅修改数据路径后运行训练模型。
方法二:深入研究训练代码的每个参数,理解其含义,如offload、sequence_parallel等,并探究数据加载器(dataloader)的处理方式、session数据的损失计算等。
方法三:在理解参数的基础上,提出自己的见解,如训练轮数、数据量级、特殊标记(special_token)的使用是否合理,学习率设置是否恰当,warmup策略是否必要,并通过查阅资料或咨询老师来解答疑惑。
方法四:对训练代码提出质疑并进行改进,如考虑替换或结合deepspeed和megatron框架,优化训练速度,解决潜在的性能瓶颈。
……
实验分析环节
方法一:仅对验证集进行验证,根据验证结果判断训练是否结束,若效果不佳,则归咎于数据问题。
方法二:结合预训练模型/sft_base模型的结果,分析每个sft_exp模型的bad case,如幻觉问题、过拟合问题,pretrain模型压根就没有这个能力?这个 size 的模型就做不了这种复杂逻辑问题?并设计实验进行验证。
方法三:不仅意识到模型结果和数据质量有关,还去分析和训练方法的关系。通过训练日志、tensorboard和模型评估结果共同分析,batch_size设置多少合适?3 个 epoch 和 2 个 epoch 的效果对比?special_token 太多还是训练集的创作任务太多?最终 loss 又是多少、低于 0.5 就要担心过拟合了?
方法四:运行大模型常用基准测评(benchmark),验证模型的通用能力,分析为何特定任务训练会导致某些能力下降,研究通用能力的平衡问题进而分析,为什么自己训 task A 会导致数学能力下降?自己训 task B 会导致创作能力下降?想办法去研究通用能力的跷跷板问题,去避免学着忘着的尴尬现象。
……
征途漫漫
在数据分析、机器学习、深度学习、大模型陆续出来后,对模型的封装性越来越强,只要几步就可将模型训练起来,所以很多调包侠将注意点放在了数据质量上,而封装性越强,也就意味着对模型的更改调整越困难,对算法人员的专业性要求也就越高。
上述这些不同的做法,虽然都能达到一定的目的,但对个人能力的锻炼和提升却有着显著差异。在技术道路上,只有不断探索、质疑、改进,才能在看似平凡的工作中,挖掘出无限的可能。
AI大模型学习福利
作为一名热心肠的互联网老兵,我决定把宝贵的AI知识分享给大家。 至于能学习到多少就看你的学习毅力和能力了 。我已将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
因篇幅有限,仅展示部分资料,需要点击下方链接即可前往获取
2024最新版CSDN大礼包:《AGI大模型学习资源包》免费分享
一、全套AGI大模型学习路线
AI大模型时代的学习之旅:从基础到前沿,掌握人工智能的核心技能!
因篇幅有限,仅展示部分资料,需要点击下方链接即可前往获取
2024最新版CSDN大礼包:《AGI大模型学习资源包》免费分享
二、640套AI大模型报告合集
这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。
因篇幅有限,仅展示部分资料,需要点击下方链接即可前往获取
2024最新版CSDN大礼包:《AGI大模型学习资源包》免费分享
三、AI大模型经典PDF籍
随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。
因篇幅有限,仅展示部分资料,需要点击下方链接即可前往获取
2024最新版CSDN大礼包:《AGI大模型学习资源包》免费分享
四、AI大模型商业化落地方案
因篇幅有限,仅展示部分资料,需要点击下方链接即可前往获取
2024最新版CSDN大礼包:《AGI大模型学习资源包》免费分享
作为普通人,入局大模型时代需要持续学习和实践,不断提高自己的技能和认知水平,同时也需要有责任感和伦理意识,为人工智能的健康发展贡献力量。