-
“今年暑假不AC?”“是的。”“那你干什么呢?”“看世界杯呀,笨蛋!”“@#$%^&*%...”确实如此,世界杯来了,球迷的节日也来了,估计很多ACMer也会抛开电脑,奔向电视作为球迷,一定想看尽量多的完整的比赛,当然,作为新时代的好青年,你一定还会看一些其它的节目,比如新闻联播(永远不要忘记关心国家大事)、非常6+7、超级女生,以及王小丫的《开心辞典》等等,假设你已经知道了所有你喜欢看的电视节目的转播时间表,你会合理安排吗?(目标是能看尽量多的完整节目)
原题地址:http://ac.jobdu.com/problem.php?pid=1434
题目描述:
-
输入:
-
输入数据包含多个测试实例,每个测试实例的第一行只有一个整数n(n<=100),表示你喜欢看的节目的总数,然后是n行数据,每行包括两个数据Ti_s,Ti_e (1<=i<=n),分别表示第i个节目的开始和结束时间,为了简化问题,每个时间都用一个正整数表示。n=0表示输入结束,不做处理。
-
输出:
-
对于每个测试实例,输出能完整看到的电视节目的个数,每个测试实例的输出占一行。
-
样例输入:
-
12 1 3 3 4 0 7 3 8 15 19 15 20 10 15 8 18 6 12 5 10 4 14 2 9 0
-
样例输出:
-
5
-
-
本题也是贪心算法的应用,但是它的贪心策略好像不是那么明显,直到看了书才否定了几个错误的贪心策略。
-
从第一次的选择来看一下几个错误的策略:
- 选择开始时间最早的? 不对,如果某个节目从0开始一直到最后,那只能看到这一个节目,显然错误。
- 选择持续时间最短的? 不对,也许有个节目只播出1个单位时间,但是在最后才开始,显然也看不全之前的节目。
书上给出了一种能得到最优解的策略:每次都选择剩余中尚未开播且结束时间最早的节目。
再次用反证法证明该策略是最优解:
假设命题:最优解中,第一个观看的节目A[s1, e1]不是结束时间最早的节目,即存在节目B[s2,e2],e2<e1,那么我们试着将A
节目替换成B节目(合法的替换,不会影响到A之后的节目),那么这两组解除了第一个节目不同外,所含的节目数是一样的,即存在
两个最优解。所以我们可以得出,第一个节目选择结束时间最早的节目,不会得不到最优解。当第一个节目被决定后,重复上述过程,
在选择第x个节目时,一定是选择在收看完前x-1个节目后,剩余节目中结束时间最早的节目(当然要还没开播!)。
AC代码如下:
#include <iostream> //#include <cstdio> #include <algorithm> #define MAXN 101 using namespace std; struct show { int st,et; bool operator < (const show &A) const //重载小于运算符,按结束时间升序 { return et < A.et; } }a[MAXN]; int main() { int N; while(cin >> N) { if (N == 0) break; for (int i = 0; i < N; ++i) cin >> a[i].st >> a[i].et; sort(a, a+N); int current_time = 0, ans = 0; //当前时间记录能否开始某个节目 for (int index = 0; index < N; ++index) { if (current_time <= a[index].st) //如果能看完整该节目(当前结束时间最早) { current_time = a[index].et; ans++; //printf("[%d,%d] ",a[index].st,a[index].et);输出每个区间测试 } else continue;//若该节目已经正在播放则跳过,判断下一个是否能看完 } //cout << endl; cout << ans << endl; } return 0; }
内存占用:1520Kb 耗时:10ms算法复杂度: O(logn)