前言
作为深度学习小白一枚,暑假期间听了台湾大学李宏毅老师主讲的Machine Learning and having it deep and structured(2015),由于2017年的最新课程似乎是给有一定DNN和RNN基础的同学准备的,所以零基础的同学可以安心地先用2015年的课入个门。
总体来说这门课非常好,有一点点机器学习的概念即可无压力开始学习,在这里贴一个知乎上的评价。知乎:深度学习如何入门?
课程主页上的安排如下:
总结一下课程上的教学内容:
前期主讲深度学习的基本框架、模型,包括DNN、RNN/LSTM等,期间还穿插theano的模型实现(当然现在比较流行的是TensorFlow了)。
中期主讲结构化学习的基本框架和数学推导,包括结构化SVM、概率图模型、马尔科夫网络等。本人对这一段不怎么感兴趣,所以跳着看的:)
后期主讲深度学习在NLP和图像上的各种延伸应用,以及深度强化学习、无监督学习的基本方法,还有当时的新模型如Attention Model等。
前期和后期与Deep Learning高度相关,所以和我一样想入门的同学要好好研究一番。
推荐的学习方法:
- 打印PDF,边听课边做笔记。
- 善用视频页面右侧的选项卡,没听清的内容可以重复播放;chrome用户可以安装扩展程序Video Speed Controller,遇到速度不合心意的视频,可以减速或加速播放。
个人笔记目录
以下是个人整理的上课笔记,正在持续更新中……