原理
Note
以下解释节选自Richard Szeliski所著 Computer Vision: Algorithms and Applications
图像处理
- 一般来说,图像处理算子是带有一幅或多幅输入图像、产生一幅输出图像的函数。
- 图像变换可分为以下两种:
- 点算子(像素变换)
- 邻域(基于区域的)算子
像素变换
- 在这一类图像处理变换中,仅仅根据输入像素值(有时可加上某些全局信息或参数)计算相应的输出像素值。
- 这类算子包括 亮度和对比度调整 ,以及颜色校正和变换。
亮度和对比度调整
-
两种常用的点过程(即点算子),是用常数对点进行 乘法 和 加法 运算:
-
两个参数 和 一般称作 增益 和 偏置 参数。我们往往用这两个参数来分别控制 对比度 和 亮度 。
-
你可以把 看成源图像像素,把 看成输出图像像素。这样一来,上面的式子就能写得更清楚些:
其中, 和 表示像素位于 第i行 和 第j列 。
代码
- 下列代码执行运算 :
说明
-
一上来,我们要建立两个变量,以存储用户输入的 和 :
-
然后,用 imread 载入图像,并将其存入一个Mat对象:
-
此时,因为要对图像进行一些变换,所以我们需要一个新的Mat对象,以存储变换后的图像。我们希望这个Mat对象拥有下面的性质:
- 像素值初始化为0
- 与原图像有相同的大小和类型
注意到, Mat::zeros 采用Matlab风格的初始化方式,用 image.size() 和 image.type() 来对Mat对象进行0初始化。
-
现在,为了执行运算 ,我们要访问图像的每一个像素。因为是对RGB图像进行运算,每个像素有三个值(R、G、B),所以我们要分别访问它们。下面是访问像素的代码片段:
注意以下两点:
- 为了访问图像的每一个像素,我们使用这一语法: image.at<Vec3b>(y,x)[c] 其中, y 是像素所在的行, x 是像素所在的列, c 是R、G、B(0、1、2)之一。
- 因为 的运算结果可能超出像素取值范围,还可能是非整数(如果 是浮点数的话),所以我们要用 saturate_cast 对结果进行转换,以确保它为有效值。
-
最后,用传统方法创建窗口并显示图像。
Note
我们可以不用 for 循环来访问每个像素,而是直接采用下面这个命令:
这里的 convertTo 将执行我们想做的 new_image = a*image + beta 。然而,我们想展现访问每一个像素的过程,所以选用了for循环的方式。实际上,这两种方式都能返回同样的结果。
结果
-
运行代码,取参数 和
-
我们将得到下面的结果: