机器学习实战---AdaBoost

本文介绍了AdaBoost算法的详细步骤,包括建立单层决策树的伪代码,并展示了训练过程和运行结果。通过多轮迭代,调整数据权重,优化分类性能。
摘要由CSDN通过智能技术生成

建立单层决策树的伪代码如下:
将最小错误率minError设为+∞
对数据集中的每一个特征(第一层循环):
\qquad 对每个步长(第二层循环):
\qquad \qquad 对每个不等号(第三层循环):
\qquad \qquad \qquad 建立一棵单层决策树并利用加权数据集对它进行测试
\qquad \qquad \qquad 如果错误率低于minError,则将当前单层决策树设为最佳单层决策树
返回最佳单层决策树

from numpy import *


def loadSimpData():
    datMat = matrix([[ 1. ,  2.1],
        [ 2. ,  1.1],
        [ 1.3,  1. ],
        [ 1. ,  1. ],
        [ 2. ,  1. ]])
    classLabels = [1.0, 1.0, -1.0, -1.0, 1.0]
    return datMat,classLabels

def loadDataSet(fileName):      #general function to parse tab -delimited floats
    numFeat = len(open(fileName).readline().split('\t')) #get number of fields 
    dataMat = []; labelMat = []
    fr = open(fileName)
    for line in fr.readlines(<
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值