Given an unsorted array of integers, find the number of longest increasing subsequence.
Example 1:
Input: [1,3,5,4,7] Output: 2 Explanation: The two longest increasing subsequence are [1, 3, 4, 7] and [1, 3, 5, 7].
Example 2:
Input: [2,2,2,2,2] Output: 5 Explanation: The length of longest continuous increasing subsequence is 1, and there are 5 subsequences' length is 1, so output 5.
Note: Length of the given array will be not exceed 2000 and the answer is guaranteed to be fit in 32-bit signed int.
class Solution {
public:
int findNumberOfLIS(vector<int>& nums) {
int n = nums.size(), max_len = 1, res = 0;
vector<int> dp(n, 1), cnt(n, 1); //dp记录以i结尾的最长子序列长度 ,cnt记录以i结尾的最长子序列的个数
for(int i = 1; i < n; ++i){
for(int j = 0; j < i; ++j){
if(nums[j] < nums[i] && dp[j] + 1 > dp[i]){
dp[i] = dp[j] + 1;
cnt[i] = cnt[j];
} else if(nums[j] < nums[i] && dp[j] + 1 == dp[i]){
cnt[i] += cnt[j];
}
}
max_len = max(max_len, dp[i]);
}
for(int i = 0; i < n; ++i)
if(dp[i] == max_len) res += cnt[i];
return res;
}
};