cs231n assignment2 q5 PyTorch on CIFAR-10

嫌啰嗦直接看源码

Q5 :PyTorch on CIFAR-10

three_layer_convnet

题面

在这里插入图片描述
在这里插入图片描述
让我们使用Pytorch来实现一个三层神经网络

解析

看下pytorch是怎么用的,原理我们其实都清楚了,自己去查下文档就好了

具体的可以看上一个cell上面给出的文档地址

For convolutions: http://pytorch.org/docs/stable/nn.html#torch.nn.functional.conv2d; pay attention to the shapes of convolutional filters!

代码

def three_layer_convnet(x, params):
    """
    Performs the forward pass of a three-layer convolutional network with the
    architecture defined above.

    Inputs:
    - x: A PyTorch Tensor of shape (N, 3, H, W) giving a minibatch of images
    - params: A list of PyTorch Tensors giving the weights and biases for the
      network; should contain the following:
      - conv_w1: PyTorch Tensor of shape (channel_1, 3, KH1, KW1) giving weights
        for the first convolutional layer
      - conv_b1: PyTorch Tensor of shape (channel_1,) giving biases for the first
        convolutional layer
      - conv_w2: PyTorch Tensor of shape (channel_2, channel_1, KH2, KW2) giving
        weights for the second convolutional layer
      - conv_b2: PyTorch Tensor of shape (channel_2,) giving biases for the second
        convolutional layer
      - fc_w: PyTorch Tensor giving weights for the fully-connected layer. Can you
        figure out what the shape should be?
      - fc_b: PyTorch Tensor giving biases for the fully-connected layer. Can you
        figure out what the shape should be?
    
    Returns:
    - scores: PyTorch Tensor of shape (N, C) giving classification scores for x
    """
    conv_w1, conv_b1, conv_w2, conv_b2, fc_w, fc_b = params
    scores = None
    ################################################################################
    # TODO: Implement the forward pass for the three-layer ConvNet.                #
    ################################################################################
    # *****START OF YOUR CODE (DO NOT DELETE/MODIFY THIS LINE)*****

    x = F.conv2d(x, conv_w1, bias=conv_b1, padding=2)
    x = F.relu(x)
    x = F.conv2d(x, conv_w2, bias=conv_b2, padding=1)
    x = F.relu(x)
    x = flatten(x)
    scores = x.mm(fc_w) + fc_b

    # *****END OF YOUR CODE (DO NOT DELETE/MODIFY THIS LINE)*****
    ################################################################################
    #                                 END OF YOUR CODE                             #
    ################################################################################
    return scores

输出

在这里插入图片描述
在这里插入图片描述
注意这里需要注意有没有使用Gpu版本的pytorch,我就是在这里发现我的pytorch没有cuda

Training a ConvNet

题面

在这里插入图片描述
在这里插入图片描述

解析

按照题面意思来就好了

代码

learning_rate = 3e-3

channel_1 = 32
channel_2 = 16

conv_w1 = None
conv_b1 = None
conv_w2 = None
conv_b2 = None
fc_w = None
fc_b = None

################################################################################
# TODO: Initialize the parameters of a three-layer ConvNet.                    #
################################################################################
# *****START OF YOUR CODE (DO NOT DELETE/MODIFY THIS LINE)*****

conv_w1 = random_weight((channel_1, 3, 5, 5))
conv_b1 = zero_weight(channel_1)
conv_w2 = random_weight((channel_2, channel_1, 3, 3))
conv_b2 = zero_weight(channel_2)
fc_w = random_weight((channel_2 * 32 * 32, 10))
fc_b = zero_weight(10)

# *****END OF YOUR CODE (DO NOT DELETE/MODIFY THIS LINE)*****
################################################################################
#                                 END OF YOUR CODE                             #
################################################################################

params = [conv_w1, conv_b1, conv_w2, conv_b2, fc_w, fc_b]
train_part2(three_layer_convnet, params, learning_rate)

输出

在这里插入图片描述

ThreeLayerConvNet

题面

在这里插入图片描述

解析

就是让我们熟悉一下几个api

代码

class ThreeLayerConvNet(nn.Module):
    def __init__(self, in_channel, channel_1, channel_2, num_classes):
        super().__init__()
        ########################################################################
        # TODO: Set up the layers you need for a three-layer ConvNet with the  #
        # architecture defined above.                                          #
        ########################################################################
        # *****START OF YOUR CODE (DO NOT DELETE/MODIFY THIS LINE)*****

        self.conv1 = nn.Conv2d(in_channel, channel_1, kernel_size=5, padding=2)
        self.conv2 = nn.Conv2d(channel_1, channel_2, kernel_size=3, padding=1)
        self.fc3 = nn.Linear(channel_2 * 32 * 32, num_classes)
        nn.init.kaiming_normal_(self.conv1.weight)
        nn.init.kaiming_normal_(self.conv2.weight)
        nn.init.kaiming_normal_(self.fc3.weight)

        # *****END OF YOUR CODE (DO NOT DELETE/MODIFY THIS LINE)*****
        ########################################################################
        #                          END OF YOUR CODE                            #
        ########################################################################

    def forward(self, x):
        scores = None
        ########################################################################
        # TODO: Implement the forward function for a 3-layer ConvNet. you      #
        # should use the layers you defined in __init__ and specify the        #
        # connectivity of those layers in forward()                            #
        ########################################################################
        # *****START OF YOUR CODE (DO NOT DELETE/MODIFY THIS LINE)*****

        x = F.relu(self.conv1(x))
        x = F.relu(self.conv2(x))
        scores = self.fc3(flatten(x))

        # *****END OF YOUR CODE (DO NOT DELETE/MODIFY THIS LINE)*****
        ########################################################################
        #                             END OF YOUR CODE                         #
        ########################################################################
        return scores

输出

在这里插入图片描述
在这里插入图片描述

Train a Three-Layer ConvNet

题面

在这里插入图片描述

解析

就仿照上面的两层全连接改写就好了

关于optim ,我试过sgd 和 adam,但是我发现还是sgd效果对于这个样本好一点。。。。

代码

learning_rate = 3e-3
channel_1 = 32
channel_2 = 16

model = None
optimizer = None
################################################################################
# TODO: Instantiate your ThreeLayerConvNet model and a corresponding optimizer #
################################################################################
# *****START OF YOUR CODE (DO NOT DELETE/MODIFY THIS LINE)*****

model = ThreeLayerConvNet(in_channel=3, channel_1=channel_1, channel_2=channel_2, num_classes=10)
optimizer = optim.SGD(model.parameters(), lr=learning_rate)

# *****END OF YOUR CODE (DO NOT DELETE/MODIFY THIS LINE)*****
################################################################################
#                                 END OF YOUR CODE                             #
################################################################################

train_part34(model, optimizer)

输出

在这里插入图片描述

Sequential API: Three-Layer ConvNet

题面

在这里插入图片描述

解析

也是仿照上面写就好了

代码

channel_1 = 32
channel_2 = 16
learning_rate = 1e-2

model = None
optimizer = None

################################################################################
# TODO: Rewrite the 2-layer ConvNet with bias from Part III with the           #
# Sequential API.                                                              #
################################################################################
# *****START OF YOUR CODE (DO NOT DELETE/MODIFY THIS LINE)*****

model = nn.Sequential(
    nn.Conv2d(in_channels=3, out_channels=channel_1, kernel_size=5, padding=2),
    nn.ReLU(),
    nn.Conv2d(in_channels=channel_1, out_channels=channel_2, kernel_size=3, padding=1),
    nn.ReLU(),
    Flatten(),
    nn.Linear(channel_2 * 32 * 32, 10)
)
optimizer = optim.SGD(model.parameters(), lr=learning_rate, momentum=0.9, nesterov=True)

# *****END OF YOUR CODE (DO NOT DELETE/MODIFY THIS LINE)*****
################################################################################
#                                 END OF YOUR CODE                             #
################################################################################

train_part34(model, optimizer)

输出

在这里插入图片描述

CIFAR-10 open-ended challenge

题面

在这里插入图片描述
在这里插入图片描述
就是让我们自己尝试搭建一种网络结构使其准确率大于70%

解析

自己试吧

代码

################################################################################
# TODO:                                                                        #         
# Experiment with any architectures, optimizers, and hyperparameters.          #
# Achieve AT LEAST 70% accuracy on the *validation set* within 10 epochs.      #
#                                                                              #
# Note that you can use the check_accuracy function to evaluate on either      #
# the test set or the validation set, by passing either loader_test or         #
# loader_val as the second argument to check_accuracy. You should not touch    #
# the test set until you have finished your architecture and  hyperparameter   #
# tuning, and only run the test set once at the end to report a final value.   #
################################################################################
model = None
optimizer = None

# *****START OF YOUR CODE (DO NOT DELETE/MODIFY THIS LINE)*****

model = nn.Sequential(
    nn.Conv2d(3, 32, kernel_size=3, stride=1, padding=1),
    nn.ReLU(),
    nn.MaxPool2d(kernel_size=2, stride=2),
    nn.Conv2d(32, 64, kernel_size=3, stride=1, padding=1),
    nn.ReLU(),
    nn.MaxPool2d(kernel_size=2, stride=2),
    nn.Conv2d(64, 128, kernel_size=3, stride=1, padding=1),
    nn.ReLU(),
    nn.MaxPool2d(kernel_size=2, stride=2),
    Flatten(),
    nn.Linear(128 * 4 * 4, 1024),
)
optimizer = optim.Adam(model.parameters(), lr=1e-3)

# *****END OF YOUR CODE (DO NOT DELETE/MODIFY THIS LINE)*****
################################################################################
#                                 END OF YOUR CODE                             #
################################################################################

# You should get at least 70% accuracy.
# You may modify the number of epochs to any number below 15.
train_part34(model, optimizer, epochs=10)

输出

在这里插入图片描述
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值