cs231n assignment3 q3 Image Captioning with Transformers

先啰嗦直接看代码

Q3 Image Captioning with Transformers

MultiHeadAttention.forward

题面

在这里插入图片描述
在这里插入图片描述

解析

让我们实现多头注意力的前向计算

可以先看看这篇李沐老师对transformer的讲解

如果你看了上面的这个视频,那么你应该能大概明白多头注意力是个什么东西
然后我们来看init部分的代码
在这里插入图片描述

首先多头注意力让我们对单纯的注意力的Q,K,V,计算的时候进行了投影,那么具体的投影方法,就是上面定义的

  1. self.key 投影key
  2. self.query 投影query
  3. self.value 投影 value

我们可以看到,这几个线性层的输入输出维度是相同的,接下来只需要计算单纯的权重就好了,如果看不懂我的解析,可以看我的代码注释,同时建议看看上面那个链接的视频

代码

    def forward(self, query, key, value, attn_mask=None):
        """
        Calculate the masked attention output for the provided data, computing
        all attention heads in parallel.

        In the shape definitions below, N is the batch size, S is the source
        sequence length, T is the target sequence length, and E is the embedding
        dimension.

        Inputs:
        - query: Input data to be used as the query, of shape (N, S, E)
        - key: Input data to be used as the key, of shape (N, T, E)
        - value: Input data to be used as the value, of shape (N, T, E)
        - attn_mask: Array of shape (S, T) where mask[i,j] == 0 indicates token
          i in the source should not influence token j in the target.

        Returns:
        - output: Tensor of shape (N, S, E) giving the weighted combination of
          data in value according to the attention weights calculated using key
          and query.
        """
        N, S, E = query.shape
        N, T, E = value.shape
        # Create a placeholder, to be overwritten by your code below.
        output = torch.empty((N, S, E))
        ############################################################################
        # TODO: Implement multiheaded attention using the equations given in       #
        # Transformer_Captioning.ipynb.                                            #
        # A few hints:                                                             #
        #  1) You'll want to split your shape from (N, T, E) into (N, T, H, E/H),  #
        #     where H is the number of heads.                                      #
        #  2) The function torch.matmul allows you to do a batched matrix multiply.#
        #     For example, you can do (N, H, T, E/H) by (N, H, E/H, T) to yield a  #
        #     shape (N, H, T, T). For more examples, see                           #
        #     https://pytorch.org/docs/stable/generated/torch.matmul.html          #
        #  3) For applying attn_mask, think how the scores should be modified to   #
        #     prevent a value from influencing output. Specifically, the PyTorch   #
        #     function masked_fill may come in handy.                              #
        ############################################################################
        # *****START OF YOUR CODE (DO NOT DELETE/MODIFY THIS LINE)*****

        # 投影QKV
        Q = self.query(query)
        K = self.key(key)
        V = self.value(value)

        # 获取投影个数
        H = self.n_head
        # 获取投影维度
        D = self.head_dim
        # 矩阵分割 与 转置 这里需要结合QKV的形状来理解
        Q = Q.reshape(N, S, H, D).transpose(1, 2)  # (N H S D)
        K = K.reshape(N, T, H, D).transpose(1, 2)  # (N H T D)
        V = V.reshape(N, T, H, D).transpose(1, 2)  # (N H T D)

        # 矩阵乘法算权重  (N, H, S, K) * (N, H, K, T) -> N, H, S, T
        energy = torch.matmul(Q, K.transpose(-2, -1)) / math.sqrt(D)  # (N H S T)

        # 判断是否需要mask
        if attn_mask is not None:
            energy = energy.masked_fill(attn_mask == 0, float('-inf'))

        # softmax计算
        A = torch.softmax(energy, dim=3)  # 对第四维度进行softmax

        # 使用dropout
        A = self.attn_drop(A)

        # 计算加权和  (N, H, S, T) * (N, H, T, K) -> (N, H, S, K)
        Y = A.matmul(V)

        # 再投影回去
        Y = Y.transpose(1, 2).reshape(N, S, E)  # (N, S, E)
        output = self.proj(Y)  # (N, S, E)

        # *****END OF YOUR CODE (DO NOT DELETE/MODIFY THIS LINE)*****
        ############################################################################
        #                             END OF YOUR CODE                             #
        ############################################################################
        return output

输出

在这里插入图片描述

Positional Encoding

题面

在这里插入图片描述
因为transformer能够很容易的主要的输入的任何部分,但是注意力机制没有顺序的概念,但是,对于许多人物,尤其是自然语言处理任务,顺序非常重要,因此作者添加了位置标记对每个单词的token

定于矩阵p为
在这里插入图片描述

我们并不直接把x输入进网络,而是将 x + p输入进来

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

解析

看懂上面的题面,就好了,还不懂就看代码

代码

class PositionalEncoding(nn.Module):
    """
    Encodes information about the positions of the tokens in the sequence. In
    this case, the layer has no learnable parameters, since it is a simple
    function of sines and cosines.
    """

    def __init__(self, embed_dim, dropout=0.1, max_len=5000):
        """
        Construct the PositionalEncoding layer.

        Inputs:
         - embed_dim: the size of the embed dimension
         - dropout: the dropout value
         - max_len: the maximum possible length of the incoming sequence
        """
        super().__init__()
        self.dropout = nn.Dropout(p=dropout)
        assert embed_dim % 2 == 0
        # Create an array with a "batch dimension" of 1 (which will broadcast
        # across all examples in the batch).
        pe = torch.zeros(1, max_len, embed_dim)
        ############################################################################
        # TODO: Construct the positional encoding array as described in            #
        # Transformer_Captioning.ipynb.  The goal is for each row to alternate     #
        # sine and cosine, and have exponents of 0, 0, 2, 2, 4, 4, etc. up to      #
        # embed_dim. Of course this exact specification is somewhat arbitrary, but #
        # this is what the autograder is expecting. For reference, our solution is #
        # less than 5 lines of code.                                               #
        ############################################################################
        # *****START OF YOUR CODE (DO NOT DELETE/MODIFY THIS LINE)*****

        # 创建一个 0 到 maxlen 的行向量并转为列向量 就相当于公式里的i
        col = torch.arange(max_len)[:, None]
        # 获取公式中的矩阵的行向量
        row = torch.pow(10000, -torch.arange(0, embed_dim, 2) / embed_dim)

        # 计算p 矩阵
        pe[0, :, 0::2] = torch.sin(col * row)
        pe[0, :, 1::2] = torch.cos(col * row)

        # *****END OF YOUR CODE (DO NOT DELETE/MODIFY THIS LINE)*****
        ############################################################################
        #                             END OF YOUR CODE                             #
        ############################################################################

        # Make sure the positional encodings will be saved with the model
        # parameters (mostly for completeness).
        self.register_buffer('pe', pe)

    def forward(self, x):
        """
        Element-wise add positional embeddings to the input sequence.

        Inputs:
         - x: the sequence fed to the positional encoder model, of shape
              (N, S, D), where N is the batch size, S is the sequence length and
              D is embed dim
        Returns:
         - output: the input sequence + positional encodings, of shape (N, S, D)
        """
        N, S, D = x.shape
        # Create a placeholder, to be overwritten by your code below.
        output = torch.empty((N, S, D))
        ############################################################################
        # TODO: Index into your array of positional encodings, and add the         #
        # appropriate ones to the input sequence. Don't forget to apply dropout    #
        # afterward. This should only take a few lines of code.                    #
        ############################################################################
        # *****START OF YOUR CODE (DO NOT DELETE/MODIFY THIS LINE)*****

        output = x + self.pe[:, :S]
        output = self.dropout(output)

        # *****END OF YOUR CODE (DO NOT DELETE/MODIFY THIS LINE)*****
        ############################################################################
        #                             END OF YOUR CODE                             #
        ############################################################################
        return output

输出

在这里插入图片描述

transformer.forward

题面

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

解析

如果是正确理解了transformer模型的话,应该不会在这里卡壳,建议多看看相应的课程和论文讲解,我在代码中也写上了详尽的注释

代码

    def forward(self, features, captions):
        """
        Given image features and caption tokens, return a distribution over the
        possible tokens for each timestep. Note that since the entire sequence
        of captions is provided all at once, we mask out future timesteps.

        Inputs:
         - features: image features, of shape (N, D)
         - captions: ground truth captions, of shape (N, T)

        Returns:
         - scores: score for each token at each timestep, of shape (N, T, V)
        """
        N, T = captions.shape
        # Create a placeholder, to be overwritten by your code below.
        scores = torch.empty((N, T, self.vocab_size))
        ############################################################################
        # TODO: Implement the forward function for CaptionTransformer.             #
        # A few hints:                                                             #
        #  1) You first have to embed your caption and add positional              #
        #     encoding. You then have to project the image features into the same  #
        #     dimensions.                                                          #
        #  2) You have to prepare a mask (tgt_mask) for masking out the future     #
        #     timesteps in captions. torch.tril() function might help in preparing #
        #     this mask.                                                           #
        #  3) Finally, apply the decoder features on the text & image embeddings   #
        #     along with the tgt_mask. Project the output to scores per token      #
        ############################################################################
        # *****START OF YOUR CODE (DO NOT DELETE/MODIFY THIS LINE)*****

        # 第一步,嵌入说明和添加位置编码
        # captions: (N, T) -> (N, T, W)
        captions = self.embedding(captions)
        captions = self.positional_encoding(captions)

        # 第二步,将图像特征投影到相同的维度
        # features: (N, D) -> (N,W) -> (N, T, W)
        features_projected = self.visual_projection(features).unsqueeze(1)

        # 第三步,准备一个掩码(tgt_mask)来屏蔽说明中的未来时间步骤
        tgt_mask = torch.tril(torch.ones((T, T), dtype=torch.bool))

        # 第四部,将解码器特征应用于文本和图像嵌入以及tgt_mask
        # scores: (N, T, W) -> (N, T, V)
        scores = self.transformer(captions, features_projected, tgt_mask=tgt_mask)
        scores = self.output(scores)

        # *****END OF YOUR CODE (DO NOT DELETE/MODIFY THIS LINE)*****
        ############################################################################
        #                             END OF YOUR CODE                             #
        ############################################################################

        return scores

输出

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值