深度学习
左左左左想
这个作者很懒,什么都没留下…
展开
-
深度学习--激活函数的对比分析
本博客仅为作者记录笔记之用,不免有很多细节不对之处。还望各位看官能够见谅,欢迎批评指正。 在学习神经网络的时候,你会经常听到一个词:激活函数。在最开始学习的时候,对激活函数总是有很多的疑惑。在日常搭建网络的时候选择激活函数也是很随意,看到大家都说ReLU效果好,就一股脑使用ReLU。通常没去深究一些问题:激活函数到底是什么?为什么要使用激活函数?常用的激活函数有哪些?这些常用的激活函数有什原创 2017-08-29 09:29:06 · 2552 阅读 · 1 评论 -
TACOTRON:端到端的语音合成
由于最近在学习语音识别和语音合成方面的内容,整理了一些东西,本文为论文tacotron的笔记。tacotron主要是将文本转化为语音,采用的结构为基于encoder-decoder的Seq2Seq的结构。其中还引入了注意机制(attention mechanism)。在对模型的结构进行介绍之前,先对encoder-decoder架构和attention mechanism进行简单的介绍。其中纯属个人原创 2017-07-09 20:50:53 · 18580 阅读 · 4 评论 -
Tensorflow学习(一)--使用TensorFlow实现线性回归
本博客仅为作者记录笔记之用,不免有很多细节不对之处。还望各位看官能够见谅,欢迎批评指正。 最近发现自己都没有真正好好学习过TensorFlow,只是看看别人project的代码,然后能跑起来就行,实际自己想要去搭建一些网络还是很困难,因此准备写一个使用TensorFlow实现一些网络的系列。这是第一篇,因此就从最简单的线性回归开始。 首先简单介绍一下线性回归。线性回归的表达式为: y=wx+b原创 2017-09-22 12:36:34 · 3278 阅读 · 0 评论 -
numpy入门100题
本博客仅为作者记录笔记之用,不免有很多细节不对之处。还望各位看官能够见谅,欢迎批评指正。此文中的题目均来自GitHub,完整代码请参考我的GitHub。期待各位的小心心~~~1.初级导入numpy包,并重命名为np (★☆☆)打印numpy库的版本 (★☆☆)输出numpy矩阵的大小 (★☆☆)如何获取numpy库中某一个函数(如add)的帮助文档 (★☆☆)创建一个0向量,向量长度为10原创 2017-09-28 15:23:40 · 1983 阅读 · 0 评论 -
语音识别:深入理解CTC Loss原理
最近看了百度的Deep Speech,看到语音识别使用的损失函数是CTC loss。便整理了一下有关于CTC loss的一些定义和推导。由于个人水平有限,如果文章有错误,还恳请各位指出,万分感谢~附上我的github,欢迎各位的follow~~~献出小星星~1. 背景介绍 在传统的语音识别的模型中,我们对语音模型进行训练之前,往往都要将文本与语音进行严格的对齐操作。这样就有两点不太好:严格对齐要原创 2017-07-30 09:58:47 · 56999 阅读 · 19 评论 -
Deep Speech:端到端的语音识别
本文为百度的Deep Speech的论文笔记,本人为深度学习小白,文章内如有错误,欢迎请各位指出~ 附上我的github主页,欢迎各位的follow~~~献出小星星~什么是端到端? 对于传统的语音识别,通常会分为3个部分:语音模型,词典,语言模型。语音模型和语言模型都是分开进行训练的,因此这两个模型优化的损失函数不是相同的。而整个语音识别训练的目标(WER:word error rate)与原创 2017-07-20 20:37:30 · 12896 阅读 · 0 评论 -
深度学习--防止过拟合的几种方法
本博客仅为作者记录笔记之用,不免有很多细节不对之处。还望各位看官能够见谅,欢迎批评指正。 在机器学习和深度学习中,过拟合是一个十分常见的问题,一旦模型过拟合了,可能这个模型就无法适用于业务场景中了。所以为了降低产生过拟合的风险,机器学习中的大牛们提出了以下几种方法供大家使用:引入正则化Dropout提前终止训练增加样本量 本文将对这5种方法进行简单的讲解分析。1. 正则化 正则化的思原创 2017-08-29 18:05:37 · 24832 阅读 · 1 评论