机器学习
左左左左想
这个作者很懒,什么都没留下…
展开
-
关联规则(一)
关联规则原创 2014-11-17 18:50:02 · 1836 阅读 · 2 评论 -
Logistic回归
众所周知,线性回归主要是用于预测,而当我们所研究的问题是一个分类问题,这里简化为一个二分类(假定两类为0和1)问题的话,由于线性回归目标函数y的输出域为负无穷到正无穷,因此线性回归就无法满足我们的需求。因此,我们就想到要将一般线性回归模型的输出从负无穷到正无穷映射至0到1之间(这里假定为输出的是将样本划分为1的概率),这样当目标函数的输出大于0.5时,我们将该样本划分为1;当目标函数小于0.5时,我原创 2017-07-24 09:06:31 · 993 阅读 · 0 评论 -
深入理解支持向量机-SVM
秋招在即,发现最近一直在做的都是深度学习里的一些项目。机器学习里的一些经典算法快忘光了。想重新再对一些经典的算法整理下,更好的面对即将到来的秋招。今天要总结的是机器学习里比较火的一种算法:支持向量机(Support Vector Machine)。1. 结构风险最小原理 在对支持向量机算法介绍之前,我们需要了解一下在传统的统计学里的一个概念“结构风险最小原理”。 首先我们回想一下,在机器学习中,原创 2017-08-05 17:02:04 · 2165 阅读 · 0 评论 -
深度学习--防止过拟合的几种方法
本博客仅为作者记录笔记之用,不免有很多细节不对之处。还望各位看官能够见谅,欢迎批评指正。 在机器学习和深度学习中,过拟合是一个十分常见的问题,一旦模型过拟合了,可能这个模型就无法适用于业务场景中了。所以为了降低产生过拟合的风险,机器学习中的大牛们提出了以下几种方法供大家使用:引入正则化Dropout提前终止训练增加样本量 本文将对这5种方法进行简单的讲解分析。1. 正则化 正则化的思原创 2017-08-29 18:05:37 · 24832 阅读 · 1 评论