概率论与数理统计
第一章
第一节 随机事件
一、随机现象
- 确定性
- 在一定条件下必然发生的现象称为确定性现象
- 随机现象
- 在一定条件下可能出现也可能不出现的现象称为随机现象
二、随机试验与样本空间
- 随机试验
- 在概率论中,把具有一下三个特征的试验称为随机试验
- 可以在相同的条件下重复地进行
- 每次试验的可能结果不止一个,并且能事先明确试验的所有可能结果
- 进行一次试验之前不能确定哪一个结果
- 在概率论中,把具有一下三个特征的试验称为随机试验
- 样本空间、样本点
- 定义:随机试验E的所有可能结果组成的集合称为E的样本空间,记为S。样本空间的元素,即试验E的每一个结果,称为样本点
三、随机事件的概念
- 样本空间S包含所有的样本点,它是S自身的子集,在每次实验中它总是发生的,S称为必然事件
- 空集Ø不包含任何点,它也作为样本空间的子集,它在每次实验中都不发生,Ø称为 不可能事件
- 必然事件的对立面是不可能事件,不可能事件的对立面是必然事件,它们互称为对立事件
几点说明
- 随机事件可简称为事件,并以大写英文字母A,B,C来表示事件
- 随机试验、样本空间与随机事件的关系
- 每一个随机试验相应地有一个样本空间,样本空间的子集就是随机事件
四、随机事件的关系与运算
设实验的样本空间为S。而
A
,
B
,
A
K
(
K
=
1
,
.
.
.
)
A,B,A_K(K=1,...)
A,B,AK(K=1,...)
是S的子集
-
若A⊂B,则称事件A包含于事件B,这指的是事件A发生必然导致事件B发生。
若A⊂B且B⊂A,则 称事件A与事件B相等
2. 事件 A∪B={x|x∈A或x∈B},称为事件A与事件B的和事件,当且仅当A,B中至少有一个发生时,事件A∪B发生
逆概公式:
- 事件A∩B={x|x∈A且x∈B},称为事件A与事件B的积事件,当且仅当A,B同时发生时事件A∩B发生,A∩B也记作AB。
A和B重叠部分
- 事件A-B={x|x∈A且x∉B},称为事件A与事件B的差事件,当且仅当A发生,B不发生时,A-B发生
-
若 A∩B=Ø,则称事件A与事件B是互不相容,或互斥的,这指的是事件A与事件B不能同时发生,基本事件是两两互不相容的
- 若A∪B=S且A∩B=Ø,则称事件A与事件B互不相容事件,又称事件A与事件B互为逆事件
A的对立事件记为
对立事件与互斥事件的区别
- 互不相容的完备事件组
设有n个事件
A
1
,
A
2
,
.
.
.
,
A
n
A_1,A_2,...,A_n
A1,A2,...,An
如果其满足:
A
i
A
j
=
Φ
(
i
≠
j
,
i
,
j
=
1
,
2
,
.
.
.
,
n
)
A_iA_j=\Phi(i≠j,i,j=1,2,...,n)
AiAj=Φ(i=j,i,j=1,2,...,n)
则称
A
1
,
A
2
,
.
.
.
,
A
n
A_1,A_2,...,A_n
A1,A2,...,An
构成互不相容的完备事件组
事件间的运算规律,设A,B,C为事件,则有
-
交换律
A ∪ B = B ∪ A ; A ∩ B = B ∩ A A∪B=B∪A; A∩B=B∩A A∪B=B∪A;A∩B=B∩A -
结合律
A ∪ ( B ∪ C ) = ( A ∪ B ) ∪ C ; A ∩ ( B ∩ C ) = ( A ∩ B ) ∩ C A∪(B∪C)=(A∪B)∪C; A∩(B∩C)=(A∩B)∩C A∪(B∪C)=(A∪B)∪C;A∩(B∩C)=(A∩B)∩C -
分配律
A ∪ ( B ∩ C ) = ( A ∪ B ) ∩ ( A ∪ C ) ; A ∩ ( B ∪ C ) = ( A ∩ B ) ∪ ( A ∩ C ) A∪(B∩C)=(A∪B)∩(A∪C);A∩(B∪C)=(A∩B)∪(A∩C) A∪(B∩C)=(A∪B)∩(A∪C);A∩(B∪C)=(A∩B)∪(A∩C) -
德摩根率
A ∪ B ‾ = A ˉ ∩ B ˉ A ∩ B ‾ = A ˉ ∪ B ˉ \overline {A \cup B}=\bar{A} \cap \bar{B} \\ \overline {A\cap B}=\bar{A} \cup \bar{B} A∪B=Aˉ∩BˉA∩B=Aˉ∪Bˉ
第二节 概率
一、频率
-
频率的定义
-
在相同条件下,进行了n次2试验,在这n次试验中,事件A发生的次数
n A n_A nA
称为事件A发生的频数比值
n A / n n_A/n nA/n
称为事件A发生的频率,记作
f n ( A ) f_n(A) fn(A)f n ( A ) = n A / n f_n(A)=n_A/n fn(A)=nA/n
-
-
频率的性质
设A是随机试验E的任一事件,则
-
0 ≤ f n ( A ) ≤ 1 0\leq f_n(A)\leq1 0≤fn(A)≤1
-
f n ( S ) = 1 f_n(S)=1 fn(S)=1
-
-
若
A 1 , A 2 , . . . , A K A_1,A_2,...,A_K A1,A2,...,AK
是两两互不相容的事件,则
f n ( A 1 ∪ A 2 ∪ ⋅ ⋅ ⋅ ∪ A k ) = f n ( A 1 ) + f n ( A 2 ) + ⋅ ⋅ ⋅ + f n ( A k ) f_n(A_1∪A_2∪···∪A_k)=f_n(A_1)+f_n(A_2)+···+f_n(A_k) fn(A1∪A2∪⋅⋅⋅∪Ak)=fn(A1)+fn(A2)+⋅⋅⋅+fn(Ak)∵ A B = Φ \because AB= \Phi ∵AB=Φ
若A∪B发生,即A或B其中之一发生,但A与B不同时发生
所以
n A ∪ B = n A + n B n_{A∪B} = n_A + n_B nA∪B=nA+nB
得
f n ( A ∪ B ) = n A B n = n A n + n B n = f n ( A ) + f n ( B ) f_n(A∪B)=\frac{n_{AB}}{n}=\frac {n_A}{n}+ \frac {n_B}{n}=f_n(A)+f_n(B) fn(A∪B)=nnAB=nnA+nnB=fn(A)+fn(B)
二、古典概型
- 古典概型定义
若随机试验满足下述两个条件
- 样本空间S只包含有限个样本点
- 每个样本点(基本事件)出现得可能性相同
称这种试验为古典概型
-
概率的古典定义
定义:设试验E的样本空间S包含n个基本事件,事件A包含k个基本事件,则有
P ( A ) = k n = A 包含的基本事件 S 中基本事件的总数 P(A) = \frac kn= \frac{A包含的基本事件}{S中基本事件的总数} P(A)=nk=S中基本事件的总数A包含的基本事件
该式称为随机事件A的概率,记作P(A) -
解决古典概型问题的步骤如下:
-
分析题目是否满足古典概型的条件即“样本空间有限和等可能性”两个条件
-
计算出样本空间所包含的所有基本事件的总数n
-
计算出事件A包含的基本事件个数k
-
代入公式
P ( A ) = k n P(A) = \frac kn P(A)=nk
计算概率排列组合是计算古典概率的有力工具
-
三、概率的定义和性质
定义:设E为随机试验,S为E的样本空间,对于E的每一个事件A,赋予一个实数P(A),称为事件A发生的概率,其中集合函数P()满足以下条件:
-
对于任意的事件A,
P ( A ) ≥ 0 P(A) \geq 0 P(A)≥0 -
P ( S ) = 1 P(S) =1 P(S)=1
-
对于任意两两互不相容的事件
$$
A_1,A_2,…,P(A_1\cup A_2 \CUP ···)=P(A_1)_ P(A_2)+···\A_iA_j=\Phi,i\neq j
$$
概率的性质
-
P ( Φ ) = 0 ,即:不可能事件发生的概率为 0 P(\Phi)=0,即:不可能事件发生的概率为0 P(Φ)=0,即:不可能事件发生的概率为0
-
有限可加性
若 A i A j = Φ ( i ≠ j , i , j = 1 , 2 , . . . n ) , 则 P ( A 1 ∪ ⋅ ⋅ ⋅ ∪ A n ) = P ( A 1 ) + P ( A 2 ) + ⋅ ⋅ ⋅ + P ( A n ) 若A_iA_j= \Phi (i \neq j,i,j=1,2,...n),则 \\ P(A_1 \cup ··· \cup A_n)=P(A_1)+P(A_2)+···+P(A_n) 若AiAj=Φ(i=j,i,j=1,2,...n),则P(A1∪⋅⋅⋅∪An)=P(A1)+P(A2)+⋅⋅⋅+P(An)
不交的有限个集合的总面积 = 各个集合面积相加
**推论1:**对于任意的事件A和B,有
P
(
A
)
=
P
(
A
B
)
+
P
(
A
B
ˉ
)
P(A)=P(AB)+P(A \bar{B})
P(A)=P(AB)+P(ABˉ)
**推论2::**若
B
1
,
B
2
,
⋅
⋅
⋅
,
B
n
是样本空间
S
的一个划分,即
B
1
∪
B
2
∪
B
n
=
S
且
B
i
B
j
=
Φ
(
i
≠
j
)
,则
P
(
A
)
=
P
(
A
B
1
)
+
P
(
A
B
2
)
+
⋅
⋅
⋅
+
P
(
A
B
n
)
P
(
A
∪
B
)
=
P
(
A
)
+
P
(
B
)
−
P
(
A
B
)
P
(
A
∪
B
∪
C
)
=
P
(
A
)
+
P
(
B
)
+
P
(
C
)
−
P
(
A
B
)
−
P
(
B
C
)
−
P
(
A
C
)
+
P
(
A
B
C
)
B_1,B_2,···,B_n是样本空间S的一个划分,即B_1 \cup B_2 \cup B_n=S且B_iB_j= \Phi (i \neq j),则 \\\\ P(A) = P(AB_1)+P(AB_2)+···+P(AB_n) \\ \\ P(A \cup B)=P(A)+P(B)-P(AB) \\\\ P(A \cup B \cup C)=P(A)+P(B)+P(C)-P(AB)-P(BC)-P(AC)+P(ABC)
B1,B2,⋅⋅⋅,Bn是样本空间S的一个划分,即B1∪B2∪Bn=S且BiBj=Φ(i=j),则P(A)=P(AB1)+P(AB2)+⋅⋅⋅+P(ABn)P(A∪B)=P(A)+P(B)−P(AB)P(A∪B∪C)=P(A)+P(B)+P(C)−P(AB)−P(BC)−P(AC)+P(ABC)
推论3:
P
(
B
−
A
)
=
P
(
B
)
−
P
(
A
B
)
P(B-A) = P(B)-P(AB)
P(B−A)=P(B)−P(AB)
**推论4:**对于任意事件A,有
P
(
A
)
≤
1
P(A) \leq 1
P(A)≤1
推论5:
P
(
A
ˉ
)
=
1
−
P
(
A
)
P(\bar A )=1-P(A)
P(Aˉ)=1−P(A)
第三节 条件概率
一、条件概率与乘法公式
定义:
设
A
、
B
是任何两个事件,
P
(
A
)
>
0
,则称
P
(
A
B
)
P
(
A
)
为
A
发生的条件下,
B
发生的条件概率,记作
P
(
B
∣
A
)
=
P
(
A
B
)
P
(
A
)
P
(
B
∣
A
)
就是在
A
发生前提条件下,
计算
B
发生的概率
设A、B是任何两个事件,P(A)>0,则称 \frac {P(AB)}{P(A)}为A发生的条件下,B发生的条件概率,记作\\\\ P(B \mid A)=\frac {P(AB)}{P(A)}\\\\ P(B \mid A)就是在A发生前提条件下, \\ 计算B发生的概率
设A、B是任何两个事件,P(A)>0,则称P(A)P(AB)为A发生的条件下,B发生的条件概率,记作P(B∣A)=P(A)P(AB)P(B∣A)就是在A发生前提条件下,计算B发生的概率
乘法公式
定理:设
P
(
A
)
>
0
,则
P
(
A
B
)
=
P
(
A
)
P
(
B
∣
A
)
注
1
:设
P
(
B
)
>
0
,则
P
(
A
B
)
=
P
(
B
)
P
(
A
∣
B
)
多个乘积情形设
P
(
A
1
A
2
⋅
⋅
⋅
A
n
)
>
0
,则
P
(
A
1
A
2
⋅
⋅
⋅
A
n
)
=
P
(
A
1
A
2
⋅
⋅
⋅
A
n
−
1
)
P
(
A
n
∣
A
1
⋅
⋅
⋅
A
n
−
1
)
=
P
(
A
1
)
P
(
A
2
∣
A
1
)
⋅
⋅
⋅
P
(
A
n
−
1
∣
A
1
⋅
⋅
⋅
A
n
−
2
)
P
(
A
n
∣
A
1
⋅
⋅
⋅
A
n
−
1
)
定理:设P(A) >0,则P(AB)=P(A)P(B \mid A) \\ 注1:设P(B)>0,则P(AB)=P(B)P(A\mid B) \\ 多个乘积情形 设P(A_1A_2···A_n)>0,则\\ P(A_1A_2···A_n)=P(A_1A_2···A_{n-1})P(A_n\mid A_1···A_{n-1} ) \\ =P(A_1)P(A_2 \mid A_1)···P(A_{n-1} \mid A_1···A_{n-2})P(A_n \mid A_1···A_{n-1})
定理:设P(A)>0,则P(AB)=P(A)P(B∣A)注1:设P(B)>0,则P(AB)=P(B)P(A∣B)多个乘积情形设P(A1A2⋅⋅⋅An)>0,则P(A1A2⋅⋅⋅An)=P(A1A2⋅⋅⋅An−1)P(An∣A1⋅⋅⋅An−1)=P(A1)P(A2∣A1)⋅⋅⋅P(An−1∣A1⋅⋅⋅An−2)P(An∣A1⋅⋅⋅An−1)
二、全概率公式与贝叶斯公式
全概率公式:
A 1 , A 2 , . . . , A n A_1,A_2,...,A_n A1,A2,...,An为互不相容的完备事件组(分割),且 P ( A i ) > 0 , i = 1 , 2 , . . . , n . P(A_i) > 0,i=1,2,...,n. P(Ai)>0,i=1,2,...,n. B = B A 1 ∪ B A 2 ∪ . . . . . . ∪ B A n B= BA_1 \cup BA_2 \cup......\cup BA_n B=BA1∪BA2∪......∪BAn,则 P ( B ) = P ( A 1 ) P ( B ∣ A 1 ) + . . . + P ( A n ) P ( B ∣ A n ) P(B)=P(A_1)P(B\mid A_1)+...+P(A_n)P(B\mid A_n) P(B)=P(A1)P(B∣A1)+...+P(An)P(B∣An)
贝叶斯公式:
设 B 1 , B 2 , . . . , B n B_1,B_2,...,B_n B1,B2,...,Bn为样本空间E的一个划分, P ( B j ) > 0 P(B_j)>0 P(Bj)>0,且 P ( A ∣ B j ) P(A\mid B_j) P(A∣Bj),则 P ( B i ∣ A ) = P ( A B i ) P ( A ) = P ( B i ) P ( A ∣ B i ) ∑ j = 1 n P ( B j ) P ( A ∣ B j ) P(B_i\mid A)=\frac{P(AB_i)}{P(A)}=\frac{P(B_i)P(A\mid B_i)}{\sum\limits_{j=1}^nP(B_j)P(A\mid B_j)} P(Bi∣A)=P(A)P(ABi)=j=1∑nP(Bj)P(A∣Bj)P(Bi)P(A∣Bi)
方法:全概率公式+乘法公式
第四节 事件的独立性
一、事件的独立性
定义:若 P ( A B ) = P ( A ) P ( B ) P(AB)=P(A)P(B) P(AB)=P(A)P(B),则称事件A和B相互独立。
结论:若事件A和B相互独立,则A与 B ˉ \bar B Bˉ, A ˉ \bar A Aˉ与B, A ˉ \bar A Aˉ与 B ˉ \bar B Bˉ也相互独立
定义:若事件 A 1 , A 2 , . . . , A n A_1,A_2,...,A_n A1,A2,...,An满足条件 P ( A i 1 A i 2 . . . A i k ) = P ( A i 1 ) P ( A i 2 ) . . . P ( A i k ) ( k − 1 , . . . , n ) P(A_{i1}A_{i2}...A_{ik})=P(A_{i1})P(A_{i2})...P(A_{ik})(k-1,...,n) P(Ai1Ai2...Aik)=P(Ai1)P(Ai2)...P(Aik)(k−1,...,n)
称事件 A 1 , A 2 , . . . , A n A_1,A_2,...,A_n A1,A2,...,An相互独立。
二、n重伯努利试验
n重伯努利试验:各次试验是独立的,每次试验只有两个结果A和 A ˉ \bar A Aˉ
这种试验的概率模型叫做伯努利概型
设P(A)=p,则在n重伯努利试验中,事件A恰好发生k次的概率是 P n ( k ) = C n k ( 1 − p ) n − k , K = 0 , 1 , . . . , n P_n(k)=C_n^k(1-p)^{n-k},K=0,1,...,n Pn(k)=Cnk(1−p)n−k,K=0,1,...,n
注意:与人数、个数、次数等计数有关的概率问题往往是伯努利概型
本章小结
本章是概率论最基础的部分,所有内容围绕随机事件和概率两个概念展开。本章的重点内容包括:随机事件的关系与运算,概率的基本性质,条件概率与乘法公式,事件的独立性。本章的基本内容及要求如下:
-
理解随机现象、随机试验和随机事件的概念,掌握事件的四种运算:事件的并、事件的交、事件的差和事件的余。掌握事件的四个运算法则:交换律、结合律、分配律和对偶律,理解事件的四种关系:包含关系、相等关系、对立关系和互不相容关系。
-
了解古典概型的定义,会计算简单的古典概型中的相关概率。
-
理解概率的定义,理解概率与频率的关系,掌握概率的基本性质:
-
0 < p ( A ) < 1 , P ( Ω ) = 1 , p ( Φ ) = 0 0<p(A)<1,P(\Omega)=1,p(\Phi)=0 0<p(A)<1,P(Ω)=1,p(Φ)=0
-
P ( A ∪ B ) = P ( A ) + P ( B ) − P ( A B ) P(A\cup B)=P(A)+P(B)-P(AB) P(A∪B)=P(A)+P(B)−P(AB),特别地,当A与B互不相容时, P ( A ∪ B ) = P ( A ) + P ( B ) P(A\cup B)=P(A)+P(B) P(A∪B)=P(A)+P(B)
-
P ( A − B ) = P ( A ) − P ( B ) P(A-B)=P(A)-P(B) P(A−B)=P(A)−P(B)
-
P ( A ˉ ) = 1 − P ( A ) P(\bar A)=1-P(A) P(Aˉ)=1−P(A)
会用这些性质进行概率的基本运算
-
-
理解条件概率的概念:
P ( A ∣ B ) = P ( A B ) P ( B ) P(A\mid B)=\frac{P(AB)}{P(B)} P(A∣B)=P(B)P(AB)
掌握乘法公式:
P ( A B ) = P ( A ) P ( B ∣ A ) = P ( B ) P ( A ∣ B ) , P ( A ) > 0 P(AB)=P(A)P(B\mid A)=P(B)P(A\mid B),P(A)>0 P(AB)=P(A)P(B∣A)=P(B)P(A∣B),P(A)>0
会用条件概率公式和乘法公式进行概念计算 -
掌握全概率公式和贝叶斯公式,会用它们计算较简单的相关问题
-
理解事件独立性的定义及充分必要条件,理解事件间关系相互独立、互不相容与相互独立三者的联系与区别
有一点需注意,就是利用概率的基本性质、条件概率、乘法公式以及事件独立性计算概率,它们的综合使用略显复杂,但其间有一个重要的角色P(AB),几乎把它们联系在一起,P(AB)是求解概率的关键。
-
理解n重伯努利试验的定义,掌握伯努利概率的重要计算公式:
P n ( k ) = C n k P k ( 1 − P ) n − k , k = 0 , 1 , . . . , n . 其中 P ( A ) = p P_n(k)=C_n^kP^k(1-P)^{n-k},k=0,1,...,n.其中P(A)=p Pn(k)=CnkPk(1−P)n−k,k=0,1,...,n.其中P(A)=p
$
P(AB)=P(A)P(B\mid A)=P(B)P(A\mid B),P(A)>0
$$
会用条件概率公式和乘法公式进行概念计算
-
掌握全概率公式和贝叶斯公式,会用它们计算较简单的相关问题
-
理解事件独立性的定义及充分必要条件,理解事件间关系相互独立、互不相容与相互独立三者的联系与区别
有一点需注意,就是利用概率的基本性质、条件概率、乘法公式以及事件独立性计算概率,它们的综合使用略显复杂,但其间有一个重要的角色P(AB),几乎把它们联系在一起,P(AB)是求解概率的关键。
-
理解n重伯努利试验的定义,掌握伯努利概率的重要计算公式:
P n ( k ) = C n k P k ( 1 − P ) n − k , k = 0 , 1 , . . . , n . 其中 P ( A ) = p P_n(k)=C_n^kP^k(1-P)^{n-k},k=0,1,...,n.其中P(A)=p Pn(k)=CnkPk(1−P)n−k,k=0,1,...,n.其中P(A)=p