自考 02197 概率论与数理统计(二) 第二章

第二章 随机变量及其概率分布

第一节 离散型随机变量

一、随机变量的概念

定义:设随机试验的样本空间 S = e , X = X ( ω ) S={e},X=X(\omega) S=e,X=X(ω)是定义在样本空间S上的单值实值函数,称 X = X ( e ) X=X(e) X=X(e)为随机变量

不管试验结果是否与数值有关,我们都可以通过引入某个变量,使试验结果与数建立了对应关系

二、离散型随机变量及其分布律

随机变量的分类:离散型,连续型

离散型随机变量的定义:随机变量所取得可能值是有限多个或无限可列个,则该随机变量叫做离散型随机变量。如观察掷一个骰子出现的点数,随机变量X的可能值是:1,2,3,4,5,6

离散型随机变量的分布律:

​ 设离散型随机变量X所有可能取的值及相应的概率为
P ( X = x k ) = P k , k = 1 , 2 , . . . P(X=x_k)=P_k,k=1,2,... P(X=xk)=Pk,k=1,2,...
​ 称此为离散型随机变量X的分布律

​ 说明:由概率的定义, P k P_k Pk满足如下两个条件:

  • P K ≥ 0 , k − 1 , 2 , . . . P_K\geq 0,k-1,2,... PK0,k1,2,...
  • ∑ k = 1 ∞ P k = 1 \sum \limits _{k=1}^ \infty P_k=1 k=1Pk=1

表示方法:

  1. 列表法
  2. 公式法

三、0-1分布与二项分布

  1. 两点分布(0-1分布)

    随机变量X只可能取0和1两个值,其概率函数为:
    P ( X = k ) = p k ( 1 − p ) 1 − k , k = 0 , 1 P(X=k)=p^k(1-p)^{1-k},k=0,1 P(X=k)=pk(1p)1k,k=0,1

    X 0 1 P k 1 − P P \begin{array}{c|lcr} X & \text0 & \text1 & \\ \hline P_k& 1-P & P \\ \end{array} XPk01P1P

  2. 二项分布

    随机变量X的所有可能值为0,1,2,…,n,其概率函数为:
    P ( X = k ) = C n k p k ( 1 − p ) n − k , k − 0 , 1 , 2 , . . . , n P(X=k)=C_n^kp^k(1-p)^{n-k},k-0,1,2,...,n P(X=k)=Cnkpk(1p)nk,k0,1,2,...,n
    则称X服从参数为n,p的二项分布,记作
    X ∽ B ( n , p ) X\backsim B(n,p) XB(n,p)
    当n=1时, P ( X = k ) = p k ( 1 − p ) 1 − k , k = 0 , 1 P(X=k)=p^k(1-p)^{1-k},k=0,1 P(X=k)=pk(1p)1k,k=0,1,X化为0-1分布

四、泊松分布

泊松分布:设随机变量X所有可能取的值为0,1,2…,取各个值的概率为
P ( X = k ) = λ k e − k k ! , k = 0 , 1 , 2... P(X=k)=\frac {\lambda^ke^{-k}}{k!},k=0,1,2... P(X=k)=k!λkek,k=0,1,2...
其中 λ > 0 \lambda >0 λ>0是常数,则称X服从参数为 λ \lambda λ的泊松分布,记为 X ∽ π ( λ ) X\backsim \pi(\lambda) Xπ(λ)

第二节 随机变量的分布函数

一、分布函数的概念

定义:设X是随机变量,x是任意实数,函数
F ( x ) = P ( X ≤ x ) F(x)=P(X\leq x) F(x)=P(Xx)
称为随机变量X的概率分布函数或分布函数。

当X为离散型随机变量时,设X的分布律为
p k = P ( X = k ) , k = 0 , 1 , 2 , . . . p_k=P(X=k),k=0,1,2,... pk=P(X=k),k=0,1,2,...
由于 X ≤ x = ∪ x k ≤ x { X 1 = x k } {X \leq x}= \mathop{\cup}\limits_{x_k \leq x}{\{X_1=x_k\}} Xx=xkx{X1=xk},由概率性质知,
F ( x ) = P ( X ≤ x ) = ∑ x k ≤ x P { X = x k } , F ( x ) = ∑ X k < x P k F(x)=P(X\leq x)= \mathop{\sum}\limits_{x_k \leq x}P\{X=x_k \},F(x)= \mathop{\sum}\limits_ {X_k<x}P_k F(x)=P(Xx)=xkxP{X=xk},F(x)=Xk<xPk
其中,求和是对所有满足 x k ≤ x x_k \leq x xkx x k x_k xk相应的概率 P k P_k Pk求和

二、分布函数的性质

分布函数的性质

  • 0 ≤ F ( x ) ≤ 1 0\leq F(x) \leq 1 0F(x)1

  • F ( x ) F(x) F(x)非减,即若 x 1 ≤ x 2 x_1 \leq x_2 x1x2,则 F ( x 1 ≤ x 2 ) F(x_1 \leq x_2) F(x1x2)

  • KaTeX parse error: Expected group after '_' at position 16: F(-\infty)=\lim_̲\limits{x \to-\…

  • F(x)右连续,即 lim ⁡ x → x 0 + F ( x ) = F ( x 0 ) \lim \limits_{x \to x_0^+}F(x)=F(x_0) xx0+limF(x)=F(x0)

第三节 连续性随机变量及其概率密度

一、连续型随机变量及其概率密度

定义:设随机变量X的分布函数为F(X),如果存在实数轴上的一个非负函数f(x),使得对任意实数x,有
F ( X ) = ∫ − ∞ x f ( t ) d t F(X)=\int_{-\infty}^xf(t)dt F(X)=xf(t)dt
则称X为连续随机变量,f(x)为X的概率密度函数,简称密度函数,或密度

显然 F ′ ( X ) = f ( x ) F'(X)=f(x) F(X)=f(x)

密度函数的性质

  1. f ( x ) ≥ 0 f(x) \geq 0 f(x)0

  2. ∫ − ∞ ∞ f ( x ) d x = 1 \int_{-\infty}^{\infty}f(x)dx=1 f(x)dx=1

    注:连续型随机变量在单点处的概率为零: P { X = c } = 0 P\{X=c\}=0 P{X=c}=0

    证明: 0 ≤ P { X = c } ≤ P { c − Δ < X ≤ c } = lim ⁡ Δ x → 0 + ∫ c − Δ x x f ( x ) d x = 0 0 \leq P{\{X=c}\} \leq P\{{c-\Delta <X\leq c}\}=\lim\limits_{\Delta x \to 0+} \int_{c- \Delta{x}} ^{x}f(x)dx=0 0P{X=c}P{cΔ<Xc}=Δx0+limcΔxxf(x)dx=0

    ∴ P ( X = c ) = 0 \therefore P(X=c)=0 P(X=c)=0

  3. P a < X < b = P a < X ≤ b = ∫ a b f ( x ) d x P{a<X<b}=P{a<X\leq b} = \int_a^bf(x)dx Pa<X<b=Pa<Xb=abf(x)dx

二、均匀分布与指数分布

  1. 均匀分布:若X的概率密度为
    f ( x ) = { 1 b − a , a ≤ x ≤ b 0 , 其它 f(x)=\begin{cases} \frac 1 {b-a}, & \text a \leq x \leq b \\ 0, & \text 其它 \end{cases} f(x)={ba1,0,axb
    在这里插入图片描述

    则称X服从区间[a,b]上的均匀分布,记作X~U(a,b)

    它的实际背景是:X取值在区间[a,b]上,并且取值在[a,b]中任意小区间内的概率与这个小区间的长度成正比

    则X具有[a,b]上的均匀分布

    分布函数
    f ( x ) = { 0 , x < a x − a b − a , a ≤ x ≤ b 1 , x ≥ b f(x)=\begin{cases} 0,& \text x <a \\ \frac {x-a}{b-a}, & \text a \leq x \leq b \\ 1,&\text x\geq b \end{cases} f(x)= 0,baxa,1,x<aaxbxb
    在这里插入图片描述

    均匀分布常见于下列情形:

    如在数值计算中,由于四舍五入,小数点后某一位小数引入的误差

    公交线路上两辆公共汽车前后通过某汽车停车站的时间,即乘客的候车时间等

  2. 指数分布

    若随机变量X具有概率密度
    f ( x ) = { λ e − λ x , x > 0 0 , 其它 f(x)=\begin{cases} \lambda e^{-\lambda x},& \text x > 0 \\ 0, & \text 其它 \\ \end{cases} f(x)={λeλx,0,x>0
    其中 λ > 0 \lambda > 0 λ>0为常数,则称X服从参数为 λ \lambda λ的指数分布

    记作: X ∽ E ( λ ) X \backsim E(\lambda) XE(λ)

    其分布函数为: F ( x ) = P { X ≤ x } = { 1 − e − λ x , x > 0 0 , 其它 F(x)=P\{X \leq x\}=\begin{cases} 1-e^{-\lambda x},& \text x > 0 \\ 0, & \text 其它 \\ \end{cases} F(x)=P{Xx}={1eλx,0,x>0

    指数分布常用于可靠性统计研究中,如元件的寿命

三、正态分布

正态分布:设随机变量X具有一下概率密度
f ( x ) = 1 2 π σ e − ( x − μ ) 2 2 σ 2 , − ∞ < x < + ∞ , σ > 0 f(x)=\frac 1{\sqrt{2\pi}\sigma}e^{- \frac{(x-\mu)^2}{2 \sigma^2}},-\infty<x<+\infty,\sigma>0 f(x)=2π σ1e2σ2(xμ)2,<x<+,σ>0
分布函数 F ( x ) = 1 2 π σ ∫ − ∞ x e − ( t − μ ) 2 2 σ 2 d t , − ∞ < x < ∞ F(x)=\frac{1}{\sqrt{2 \pi}\sigma}\int_{-\infty}^{x}e^{- \frac {(t- \mu)^2}{2\sigma^2}}dt,-\infty<x<\infty F(x)=2π σ1xe2σ2(tμ)2dt,<x<

则称X服从一 μ , σ 2 \mu,\sigma^2 μ,σ2为参数的正态分布。记作 X ∽ N ( μ , σ 2 ) X \backsim N(\mu,\sigma^2) XN(μ,σ2)

μ , σ = 1 \mu,\sigma=1 μ,σ=1的正态分布称为标准正态分布。记为 X ∽ N ( 0 , 1 ) X\backsim N(0,1) XN(0,1)

其密度函数和分布函数常用 φ ( x ) \varphi(x) φ(x) Φ ( x ) \Phi(x) Φ(x)表示:
φ ( x ) = 1 2 π ∫ − ∞ x e − x 2 2 , − ∞ < x < ∞ Φ ( x ) = 1 2 π ∫ − ∞ x e − t 2 2 d t , − ∞ < x < ∞ \varphi(x)=\frac{1}{\sqrt{2 \pi}}\int_{-\infty}^{x}e^{-\frac{x^2}{2}},-\infty<x<\infty \\ \Phi (x)=\frac {1}{\sqrt{2\pi}} \int_{-\infty}^xe^{-\frac{t^2}{2}}dt,- \infty<x<\infty φ(x)=2π 1xe2x2,<x<Φ(x)=2π 1xe2t2dt,<x<
Φ ( x ) \Phi(x) Φ(x)的性质:

  1. Φ ( 0 ) = 1 2 \Phi(0)=\frac{1}{2} Φ(0)=21
  2. ∀ x ∈ R , Φ ( − x ) = 1 − Φ ( x ) \forall x\in R, \Phi(-x)=1- \Phi(x) xR,Φ(x)=1Φ(x)

X ∽ N ( μ , σ 2 ) X\backsim N(\mu,\sigma^2) XN(μ,σ2),则 Z = X − μ σ ∽ N ( 0 , 1 ) Z=\frac {X-\mu}{\sigma} \backsim N(0,1) Z=σXμN(0,1).

X ∽ N ( μ , σ 2 ) X\backsim N(\mu,\sigma^2) XN(μ,σ2)

⇒ F x ( x ) = P { X ≤ x } = P { X − μ σ ≤ x − μ σ } \Rightarrow F_x(x)=P\{X \leq x\}=P{\{\frac {X- \mu}{\sigma}} \leq \frac{x- \mu}{\sigma}\} Fx(x)=P{Xx}=P{σXμσxμ}

= Φ ( x − μ σ ) =\Phi(\frac{x-\mu}{\sigma}) =Φ(σxμ)

第四节 随机变量函数的概率分布

一、离散型随机变量函数的概率分布

一般,若离散型随机变量X的概率分布为:
X x 1 x 2 . . . x k . . . P k P 1 P 2 . . . P k . . . \begin{array}{c|lcr} X & \text x_1 & \text x_2 & \text ... & \text x_k & \text ...\\ \hline P_k & P_1 & P_2 & ... & P_k & ... \end{array} XPkx1P1x2P2......xkPk......
Y = g ( x ) Y=g(x) Y=g(x)的概率分布为:
Y = g ( X ) g ( x 1 ) g ( x 2 ) . . . g ( x k ) . . . P k P 1 P 2 . . . P k . . . \begin{array}{c|lcr} Y=g(X) & \text g(x_1) & \text g(x_2) & \text ... & \text g(x_k) & \text ...\\ \hline P_k & P_1 & P_2 & ... & P_k & ... \end{array} Y=g(X)Pkg(x1)P1g(x2)P2......g(xk)Pk......
如果 g ( X k ) g(X_k) g(Xk)中有一些是相同的,把它们作适当并项即可

二、连续型随机变量函数的概率分布

问题:已知X的概率密度 f x ( x ) f_x(x) fx(x),求随机变量函数 Y = g ( X ) Y=g(X) Y=g(X)的概率密度 f Y ( y ) f_Y(y) fY(y)

一般方法

  1. 求Y 的分布函数 F Y ( y ) F_Y(y) FY(y)
    F Y ( y ) 根据分布函数的定义 → P ( Y ≤ y ) = P ( g ( X ) ≤ y ) = P ( X ∈ { x ∣ g ( x ) ≤ y } ) F_Y(y) \underrightarrow{根据分布函数的定义} P(Y \leq y)=P(g(X) \leq y)\\ =P(X \in \{x \mid g(x)\leq y \}) FY(y) 根据分布函数的定义P(Yy)=P(g(X)y)=P(X{xg(x)y})

  2. F Y ( y ) F_Y(y) FY(y)求导,得到 f Y ( y ) f_Y(y) fY(y) f Y ( y ) = F Y y ( y ) f_Y(y)=F_Y^y(y) fY(y)=FYy(y)

定理:设随机变量X具有概率密度 f x ( x ) , − ∞ < x < ∞ f_x(x),- \infty < x < \infty fx(x),<x<,又设函数 g ( x ) g(x) g(x)处处可导,且有 g ′ ( x ) > 0 g^\prime(x) > 0 g(x)>0(或恒有 g ′ ( x ) < 0 g^\prime (x)<0 g(x)<0

Y = g ( X ) Y=g(X) Y=g(X)是一个连续型随机变量Y,其概率密度为
f y ( y ) = { f x [ h ( y ) ] ∣ [ h ′ ( y ) ∣ ,   α < β 0 , 其它 f_y(y)= \begin{cases} f_x[h(y)]|[h\prime(y)|, & \text\ \alpha < \beta \\ 0, & \text 其它 \\ \end{cases} fy(y)={fx[h(y)][h(y),0, α<β
其中 h ( y ) h(y) h(y) g ( x ) g(x) g(x)的反函数

x = g ′ ( y ) = h ( y ) x=g\prime (y)=h(y) x=g(y)=h(y)

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值