python实现BackPropagation算法

python实现BackPropagation算法

实现神经网络的权重和偏置更新,很重要的一部就是使用BackPropagation(反向传播)算法。具体来说,反向传播算法就是用误差的反向传播来计算w(权重)和b(偏置)相对于目标函数的导数,这样就可以在原来的w,b的基础上减去偏导数来更新。其中我上次写的python实现梯度下降中有一个函数backprop(x,y)就是用来实现反向传播的算法。(注:代码并非自己总结,github上有这个代码的实现https://github.com/LCAIZJ/neural-networks-and-deep-learning

def backprop(self,x,y):
    nabla_b = [np.zeros(b.shape) for b in self.biases]
    nabla_w = [np.zeros(w.shape) for w in self.weights]
    # 通过输入x,前向计算输出层的值
    activation = x
    activations = [x]# 存储的是所以的输出层
    zs = []
    for b,w in zip(self.biases,self.weights):
        z = np.dot(w,activation)+b
        zs.append(z)
        activation = sigmoid(z)
        activations.append(activation)
    # 计算输出层的error
    delta = self.cost_derivative(activations[-1],y)*sigmoid_prime(zs[:-1])
    nabla_b[-1] = delta
    nabla_w[-1] = np.dot(delta,activations[-2].transpose())
    #反向更新error
    for l in xrange(2,self.num_layers):
        z = zs[-l]
        sp = sigmoid_prime(z)
        delta = np.dot(self.weight[-l+1].transpose(),delta)*sp
        nabla_b[-l] = delta
        nabla_w[-l] = np.dot(delta,activations[-l-1].transpose())
    return (nabla_b,nabla_w)

其中,传入的x和y是一个单独的实例。

def cost_derivative(self,output_activation,y):
    return (output_activation-y)
def sigmoid(z):
    return 1.0/(1.0+np.exp(z))
def sigmoid_prime(z):
    return sigmoid(z)*(1-sigmoid(z))
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值