- 博客(80)
- 资源 (1)
- 收藏
- 关注
原创 昇思25天学习打卡营第25天|SSD目标检测
SSD,全称Single Shot MultiBox Detector,是Wei Liu在ECCV 2016上提出的一种目标检测算法。SSD是单阶段的目标检测算法,通过卷积神经网络进行特征提取,取不同的特征层进行检测输出,所以SSD是一种多尺度的检测方法。在需要检测的特征层,直接使用一个3×3卷积,进行通道的变换。SSD采用了anchor的策略,预设不同长宽比例的anchor,每一个输出特征层基于anchor预测多个检测框(4或者6)。采用了多尺度检测方法,浅层用于检测小目标,深层用于检测大目标。
2024-07-28 10:26:38 357
原创 昇思25天学习打卡营第24天|Vision Transformer图像分类
近些年,随着基于自注意(Self-Attention)结构的模型的发展,特别是Transformer模型的提出,极大地促进了自然语言处理模型的发展。由于Transformers的计算效率和可扩展性,它已经能够训练具有超过100B参数的空前规模的模型。ViT则是自然语言处理和计算机视觉两个领域的融合结晶。在不依赖卷积操作的情况下,依然可以在图像分类任务上达到很好的效果。
2024-07-23 13:46:54 397
原创 昇思25天学习打卡营第23天|ShuffleNet图像分类
ShuffleNetV1是旷视科技提出的一种计算高效的CNN模型,和MobileNet, SqueezeNet等一样主要应用在移动端,所以模型的设计目标就是利用有限的计算资源来达到最好的模型精度。ShuffleNetV1的设计核心是引入了两种操作:Pointwise Group Convolution和Channel Shuffle,这在保持精度的同时大大降低了模型的计算量。因此,ShuffleNetV1和MobileNet类似,都是通过设计更高效的网络结构来实现模型的压缩和加速。
2024-07-22 18:19:43 1094
原创 昇思25天学习打卡营第22天|ResNet50图像分类
ResNet50网络是2015年由微软实验室的何恺明提出,获得ILSVRC2015图像分类竞赛第一名。在ResNet网络提出之前,传统的卷积神经网络都是将一系列的卷积层和池化层堆叠得到的,但当网络堆叠到一定深度时,就会出现退化问题。下图是在CIFAR-10数据集上使用56层网络与20层网络训练误差和测试误差图,由图中数据可以看出,56层网络比20层网络训练误差和测试误差更大,随着网络的加深,其误差并没有如预想的一样减小。
2024-07-22 11:07:48 1202
原创 昇思25天学习打卡营第21天|LSTM+CRF序列标注
序列标注指给定输入序列,给序列中每个Token进行标注标签的过程。序列标注问题通常用于从文本中进行信息抽取,包括分词(Word Segmentation)、词性标注(Position Tagging)、命名实体识别(Named Entity Recognition, NER)等。如上表所示,清华大学和北京是地名,需要将其识别,我们对每个输入的单词预测其标签,最后根据标签来识别实体。
2024-07-19 13:40:04 884
原创 昇思25天学习打卡营第20天|RNN实现情感分类
最后我们设计一个预测函数,实现开头描述的效果,输入一句评价,获得评价的情感分类。将输入句子进行分词;使用词表获取对应的index id序列;index id序列转为Tensor;送入模型获得预测结果;打印输出预测结果。# 结果:'Negative'# 结果:'Positive'截图时间。
2024-07-17 19:38:48 960
原创 昇思25天学习打卡营第19天|Pix2Pix实现图像转换
Pix2Pix是基于条件生成对抗网络(cGAN, Condition Generative Adversarial Networks )实现的一种深度学习图像转换模型,该模型是由Phillip Isola等作者在2017年CVPR上提出的,可以实现语义/标签到真实图片、灰度图到彩色图、航空图到地图、白天到黑夜、线稿图到实物图的转换。Pix2Pix是将cGAN应用于有监督的图像到图像翻译的经典之作,其包括两个模型:生成器和判别器。
2024-07-17 10:17:18 1024
原创 昇思25天学习打卡营第18天|GAN图像生成
生成式对抗网络(Generative Adversarial Networks,GAN)是一种生成式机器学习模型,是近年来复杂分布上无监督学习最具前景的方法之一。最初,GAN由Ian J. Goodfellow于2014年发明,并在论文GAN通过设计生成模型和判别模型这两个模块,使其互相博弈学习产生了相当好的输出。GAN模型的核心在于提出了通过对抗过程来估计生成模型这一全新框架。在这个框架中,将会同时训练两个模型——捕捉数据分布的生成模型G和估计样本是否来自训练数据的判别模型D。
2024-07-16 19:48:25 1023
原创 昇思25天学习打卡营第17天|DCGAN生成漫画头像
DCGAN(深度卷积对抗生成网络,Deep Convolutional Generative Adversarial Networks)是GAN的直接扩展。不同之处在于,DCGAN会分别在判别器和生成器中使用卷积和转置卷积层。它最早由Radford等人在论文中进行描述。判别器由分层的卷积层、BatchNorm层和LeakyReLU激活层组成。输入是3x64x64的图像,输出是该图像为真图像的概率。生成器则是由转置卷积层、BatchNorm层和ReLU激活层组成。输入是标准正态分布中提取出的隐向量z。
2024-07-16 11:40:03 635
原创 昇思25天学习打卡营第16天|CycleGAN图像风格迁移互换
即循环对抗生成网络,来自论文。该模型实现了一种在没有配对示例的情况下学习将图像从源域 X 转换到目标域 Y 的方法。该模型一个重要应用领域是域迁移(Domain Adaptation),可以通俗地理解为图像风格迁移。
2024-07-15 17:32:14 694
原创 昇思25天学习打卡营第15天|基于MobileNetv2的垃圾分类
MobileNet网络是由Google团队于2017年提出的专注于移动端、嵌入式或IoT设备的轻量级CNN网络,相比于传统的卷积神经网络,MobileNet网络使用深度可分离卷积(Depthwise Separable Convolution)的思想在准确率小幅度降低的前提下,大大减小了模型参数与运算量。并引入宽度系数 α和分辨率系数 β使模型满足不同应用场景的需求。
2024-07-12 17:15:29 542
原创 昇思25天学习打卡营第14天|基于MindSpore的红酒分类实验
本文主要介绍使用MindSpore在部分wine数据集上进行KNN实验。K近邻算法(K-Nearest-Neighbor, KNN)是一种用于分类和回归的非参数统计方法,最初由 Cover和Hart于1968年提出(),是机器学习最基础的算法之一。它正是基于以上思想:要确定一个样本的类别,可以计算它与所有训练样本的距离,然后找出和该样本最接近的k个样本,统计出这些样本的类别并进行投票,票数最多的那个类就是分类的结果。
2024-07-11 11:34:07 705
原创 昇思25天学习打卡营第13天|基于MindNLP+MusicGen生成自己的个性化音乐
MusicGen是来自Meta AI的Jade Copet等人提出的基于单个语言模型(LM)的音乐生成模型,能够根据文本描述或音频提示生成高质量的音乐样本,相关研究成果参考论文《
2024-07-10 19:27:15 621
原创 昇思25天学习打卡营第12天|基于MindSpore通过GPT实现情感分类
本文介绍如何基于MindSpore这套AI开发平台,通过调用GPT实现情感分类。
2024-07-09 19:48:47 307
原创 昇思25天学习打卡营第11天|基于MindSpore的GPT2文本摘要
准备nlpcc2017摘要数据,内容为新闻正文及其摘要,总计50000个样本。
2024-07-09 16:03:09 390
原创 昇思25天学习打卡营第10天|基于MindSpore实现BERT对话情绪识别
BERT全称是来自变换器的双向编码器表征量(Bidirectional Encoder Representations from Transformers),它是Google于2018年末开发并发布的一种新型语言模型。与BERT模型相似的预训练语言模型例如问答、命名实体识别、自然语言推理、文本分类等在许多自然语言处理任务中发挥着重要作用。模型是基于Transformer中的Encoder并加上双向的结构。
2024-07-05 17:20:11 887
原创 昇思25天学习打卡营第9天|使用静态图加速
动态图的特点是计算图的构建和计算同时发生(Define by run),其符合Python的解释执行方式,在计算图中定义一个Tensor时,其值就已经被计算且确定,因此在调试模型时较为方便,能够实时得到中间结果的值,但由于所有节点都需要被保存,导致难以对整个计算图进行优化。在MindSpore中,静态图模式又被称为Graph模式,在Graph模式下,基于图优化、计算图整图下沉等技术,编译器可以针对图进行全局的优化,获得较好的性能,因此比较适合网络固定且需要高性能的场景。
2024-07-04 22:28:56 922
原创 昇思25天学习打卡营第8天|模型训练
参考学习打卡营第6天|网络构建,构建一个神经网络模型。nn.ReLU(),nn.ReLU(),超参(Hyperparameters)是可以调整的参数,可以控制模型训练优化的过程,不同的超参数值可能会影响模型训练和收敛速度。wt1wt−η1n∑x∈B∇lxwtwt1wt−ηn1x∈B∑∇lxwt公式中,nnn是批量大小(batch size),ηηη是学习率(learning rate)。另外,
2024-07-03 10:15:35 630
原创 昇思25天学习打卡营第7天|函数式自动微分
神经网络的训练主要使用反向传播算法,模型预测值(logits)与正确标签(label)送入损失函数(loss function)获得loss,然后进行反向传播计算,求得梯度(gradients),最终更新至模型参数(parameters)。自动微分能够计算可导函数在某点处的导数值,是反向传播算法的一般化。自动微分主要解决的问题是将一个复杂的数学运算分解为一系列简单的基本运算,该功能对用户屏蔽了大量的求导细节和过程,大大降低了框架的使用门槛。
2024-07-02 18:53:35 607
原创 昇思25天学习打卡营第6天|网络构建
提供了常见神经网络层的实现,在MindSpore中,Cell类是构建所有网络的基类,也是网络的基本单元。一个神经网络模型表示为一个Cell,它由不同的子Cell构成。使用这样的嵌套结构,可以简单地使用面向对象编程的思维,对神经网络结构进行构建和管理。神经网络模型是由神经网络层和Tensor操作构成的,),这些参数会在训练过程中不断进行优化,可通过。网络内部神经网络层具有权重参数和偏置参数(如。方法中进行子Cell的实例化和状态管理,在。来获取参数名及对应的参数详情。方法中实现Tensor操作。
2024-07-01 17:03:04 322
原创 昇思25天学习打卡营第5天|数据变换Transforms
MindSpore提供不同种类的数据变换(Transforms),配合数据处理Pipeline来实现数据预处理。所有的Transforms均可通过map方法传入,实现对指定数据列的处理。mindspore.dataset提供了面向图像、文本、音频等不同数据类型的Transforms,同时也支持使用Lambda函数。
2024-06-28 09:47:24 507
原创 昇思25天学习打卡营第4天|数据集Dataset
MindSpore提供基于Pipeline的数据引擎,通过数据集(Dataset)和数据变换(Transforms)实现高效的数据预处理。其中Dataset是Pipeline的起始,用于加载原始数据。mindspore.dataset模块提供了一些常用的公开数据集和标准格式数据集的加载API。对于MindSpore暂不支持直接加载的数据集,可以构造自定义数据加载类或自定义数据集生成函数的方式来生成数据集,然后通过GeneratorDataset接口实现自定义方式的数据集加载。
2024-06-27 17:34:45 827
原创 昇思25天学习打卡营第3天|张量Tensor
张量的创建方式有多种,构造张量时,支持传入Tensor、float、int、bool、tuple、list和numpy.ndarray类型。张量(Tensor)是一种特殊的数据结构,与数组和矩阵非常相似。张量是MindSpore网络运算中的基本数据结构。张量之间有很多运算,包括算术、线性代数、矩阵处理(转置、标引、切片)、采样等,张量运算和NumPy的使用方式类似。Tensor索引与Numpy索引类似,索引从0开始编制,负索引表示按倒序编制,冒号:和 …用于对数据进行切片。
2024-06-26 18:57:55 359
原创 昇思25天学习打卡营第2天|快速入门
今天通过昇思大模型平台AI实验室提供的在线Jupyter工具,快速入门MindSpore。:通过MindSpore的API快速实现一个简单的深度学习模型。
2024-06-25 21:43:10 409
原创 Drools 入门
Drools 是一款基于 Java 语言的开源规则引擎,可以将复杂且多变的业务规则从硬编码中解放出来,以规则脚本的形式存放在文件或特定的存储介质中(这里可以是数据库表),使得业务规则的变更不需要修正项目代码、重启服务器就可以在线上环境立即生效。
2021-07-31 20:30:39 296 2
原创 Oracle 更新分区字段数据
Oracle 更新分区字段数据准备工作创建分区表create table test_partition( id number, code number) partition by hash (code) partitions 4;插入数据insert into test_partition(id, code) values (1, 100); insert into test_partition(id, code) values (2, 200);实战更新
2021-04-15 15:25:56 1765
原创 Redis持久化
文章目录Redis持久化RDBAOF总结Redis持久化将Redis数据的更新异步保存至磁盘上。RDBRDB是Redis内存到硬盘的快照,每隔一段时间会将数据持久化到硬盘。触发机制save(同步):阻塞Redisbgsave(异步):不会阻塞Redis,但是会fork新进程配置save 9000 1 #9000秒内有1个key变化则持久化save 300 5 #300秒内...
2019-12-31 16:16:21 159
原创 Redis扩展
文章目录Redis扩展慢查询pipeline发布订阅BitmapHyperLogLogGEORedis扩展慢查询生命周期两个配置默认值config get slowlog-max-len = 128config get slowlog-log-slower-than = 10000 # 慢查询阈值,单位:微秒showlog-log-slower-than = 0 :记录所有命...
2019-12-31 16:13:34 228
原创 Redis命令
文章目录Redis命令通用命令string - 字符串hash - 哈希list - 列表(有序、可重复)set - 集合(无序、无重复)zset - 有序集合Redis命令通用命令keys [pattern] :遍历所有key(生产环境禁用)dbsize :计算key的总数exists key :检查key是否存在del key [key...] :删除指定key-valueex...
2019-12-31 16:09:24 209
原创 Redis入门
文章目录Redis入门应用可执行文件启动Redis服务停止Redis服务配置Redis入门Redis是单线程的,基于内存的非关系型数据库。应用缓存系统计数器消息队列系统排行榜社交网络实时系统可执行文件redis-server :Redis服务器redis-cli :Redis命令行客户端redis-benchmark :Redis性能测试工具redis-check...
2019-12-31 16:07:20 117
原创 【Spring入门-05】DispatcherServlet
Spring MVC 基于模型-视图-控制器(Model-View-Controller,MVC)模式实现,用于构建松散耦合的 Web 应用。Spring MVC 框架是围绕 DispatcherServlet 设计的,DispatcherServlet 用来处理所有的 HTTP 请求和响应。
2019-07-31 18:02:58 257
原创 Guava Cache 入门
文章目录Guava Cache使用缓存数据删除被动删除主动删除更新锁定参考Guava CacheGuava Cache 来自于 Google 开源的 Guava 类库,是一个实现比较完善的本地缓存。使用先声明一个 CacheBuilder 对象,并设置缓存的相关参数,然后调用其 build 方法获得一个 Cache 接口的实例。两种创建方式:使用 CacheLoader 创建,适用于...
2019-07-31 16:35:25 182
原创 Ehcache 入门
Ehcache 是一个用 Java 实现的使用简单、高速、线程安全的缓存管理类库,提供了用内存、磁盘文件存储,以及分布式存储等多种灵活的管理方案。
2019-07-30 18:44:52 175
原创 Hibernate 缓存
Hibernate 缓存是指为了降低应用程序对物理数据源访问的频次,从而提高应用程序的运行性能的一种策略。并不是指计算机的内存或者 CPU 的一二级缓存。ORM 框架访问数据库的效率直接影响应用程序的运行速度,提升和优化 ORM 框架的执行效率至关重要。而 Hibernate 的缓存是提升和优化 Hibernate 执行效率的关键。
2019-07-04 15:02:15 576
原创 配置 MySQL 主从复制
MySQL 的主从复制是异步操作。MySQL 的复制类型分为2种:1. 基于 Binary Log 日志的复制2. 使用 GTID 完成基于事务的复制三种 Binary Log 日志格式:1. Statement:存储 SQL 语句,存储日志量最小2. Row:存储 event 数据,存储日志量大,不能直接进行读取3. Mixed:介于 Row 和 Statement 之间,对于不确定的操作使用 Row 记录
2019-06-26 20:30:46 197
原创 【Spring入门-04】AOP
AOP(Aspect Oriented Programming):面向切面编程,可以把各类的公共行为封装到一个可重用模块,并将其命名为 Aspect,即切面,减少系统的重复代码,降低模块之间的耦合。常用的主要功能:日志记录,性能统计,安全控制,事务处理,异常处理。
2019-06-21 08:55:55 115
原创 【Spring入门-03】IoC 容器
IoC(Inverse of Control)——控制反转控制:控制对象的创建与销毁(生命周期)反转:将对象的控制权交给 IoC 容器
2019-06-21 08:51:26 109
原创 ZooKeeper 入门
ZooKeeper 是一个分布式的,开放源码的分布式应用程序协调服务,是 Google 的 Chubby 一个开源的实现,是 Hadoop 和 Hbase 的重要组件。它是一个为分布式应用提供一致性服务的软件,提供的功能包括:配置维护、域名服务、分布式同步、组服务等。ZooKeeper 的目标就是封装好复杂易出错的关键服务,将简单易用的接口和性能高效、功能稳定的系统提供给用户。
2019-06-05 15:58:19 5674
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人