昇思25天学习打卡营第20天|RNN实现情感分类

概述

情感分类是自然语言处理中的经典任务,是典型的分类问题。本文介绍如何使用MindSpore实现一个基于RNN网络的情感分类模型,实现如下的效果:

输入: This film is terrible
正确标签: Negative
预测标签: Negative

输入: This film is great
正确标签: Positive
预测标签: Positive

数据准备

使用情感分类的经典数据集IMDB影评数据集,数据集包含Positive和Negative两类。

下载数据集

代码示例:

import os
import shutil
import requests
import tempfile
from tqdm import tqdm
from typing import IO
from pathlib import Path

cache_dir = Path.home() / '.mindspore_examples'

def http_get(url: str, temp_file: IO):
    """使用requests库下载数据,并使用tqdm库进行流程可视化"""
    req = requests.get(url, stream=True)
    content_length = req.headers.get('Content-Length')
    total = int(content_length) if content_length is not None else None
    progress = tqdm(unit='B', total=total)
    for chunk in req.iter_content(chunk_size=1024):
        if chunk:
            progress.update(len(chunk))
            temp_file.write(chunk)
    progress.close()

def download(file_name: str, url: str):
    """下载数据并存为指定名称"""
    if not os.path.exists(cache_dir):
        os.makedirs(cache_dir)
    cache_path = os.path.join(cache_dir, file_name)
    cache_exist = os.path.exists(cache_path)
    if not cache_exist:
        with tempfile.NamedTemporaryFile() as temp_file:
            http_get(url, temp_file)
            temp_file.flush()
            temp_file.seek(0)
            with open(cache_path, 'wb') as cache_file:
                shutil.copyfileobj(temp_file, cache_file)
    return cache_path

imdb_path = download('aclImdb_v1.tar.gz', 'https://mindspore-website.obs.myhuaweicloud.com/notebook/datasets/aclImdb_v1.tar.gz')
imdb_path

加载数据集

下载好的IMDB数据集为tar.gz文件,我们使用Python的tarfile库对其进行读取,并将所有数据和标签分别进行存放。原始的IMDB数据集解压目录如下:

    ├── aclImdb
    │   ├── imdbEr.txt
    │   ├── imdb.vocab
    │   ├── README
    │   ├── test
    │   └── train
    │         ├── neg
    │         ├── pos
    ...

数据集已分割为train和test两部分,且每部分包含neg和pos两个分类的文件夹,因此需分别train和test进行读取并处理数据和标签。

代码示例:

import re
import six
import string
import tarfile

class IMDBData():
    """IMDB数据集加载器

    加载IMDB数据集并处理为一个Python迭代对象。

    """
    label_map = {
        "pos": 1,
        "neg": 0
    }
    def __init__(self, path, mode="train"):
        self.mode = mode
        self.path = path
        self.docs, self.labels = [], []

        self._load("pos")
        self._load("neg")

    def _load(self, label):
        pattern = re.compile(r"aclImdb/{}/{}/.*\.txt$".format(self.mode, label))
        # 将数据加载至内存
        with tarfile.open(self.path) as tarf:
            tf = tarf.next()
            while tf is not None:
                if bool(pattern.match(tf.name)):
                    # 对文本进行分词、去除标点和特殊字符、小写处理
                    self.docs.append(str(tarf.extractfile(tf).read().rstrip(six.b("\n\r"))
                                         .translate(None, six.b(string.punctuation)).lower()).split())
                    self.labels.append([self.label_map[label]])
                tf = tarf.next()

    def __getitem__(self, idx):
        return self.docs[idx], self.labels[idx]

    def __len__(self):
        return len(self.docs)

# 加载训练数据集进行测试
imdb_train = IMDBData(imdb_path, 'train')

import mindspore.dataset as ds

def load_imdb(imdb_path):
    imdb_train = ds.GeneratorDataset(IMDBData(imdb_path, "train"), column_names=["text", "label"], shuffle=True, num_samples=10000)
    imdb_test = ds.GeneratorDataset(IMDBData(imdb_path, "test"), column_names=["text", "label"], shuffle=False)
    return imdb_train, imdb_test
    
imdb_train, imdb_test = load_imdb(imdb_path)

加载预训练词向量

预训练词向量是对输入单词的数值化表示,通过nn.Embedding层,采用查表的方式,输入单词对应词表中的index,获得对应的表达向量。
因此进行模型构造前,需要将Embedding层所需的词向量和词表进行构造。这里使用Glove(Global Vectors for Word Representation)这种经典的预训练词向量,
其数据格式如下:

WordVector
the0.418 0.24968 -0.41242 0.1217 0.34527 -0.044457 -0.49688 -0.17862 -0.00066023 …
,0.013441 0.23682 -0.16899 0.40951 0.63812 0.47709 -0.42852 -0.55641 -0.364 …

直接使用第一列的单词作为词表,使用dataset.text.Vocab将其按顺序加载;同时读取每一行的Vector并转为numpy.array,用于nn.Embedding加载权重使用。

代码示例:

import zipfile
import numpy as np

def load_glove(glove_path):
    glove_100d_path = os.path.join(cache_dir, 'glove.6B.100d.txt')
    if not os.path.exists(glove_100d_path):
        glove_zip = zipfile.ZipFile(glove_path)
        glove_zip.extractall(cache_dir)

    embeddings = []
    tokens = []
    with open(glove_100d_path, encoding='utf-8') as gf:
        for glove in gf:
            word, embedding = glove.split(maxsplit=1)
            tokens.append(word)
            embeddings.append(np.fromstring(embedding, dtype=np.float32, sep=' '))
    # 添加 <unk>, <pad> 两个特殊占位符对应的embedding
    embeddings.append(np.random.rand(100))
    embeddings.append(np.zeros((100,), np.float32))

    vocab = ds.text.Vocab.from_list(tokens, special_tokens=["<unk>", "<pad>"], special_first=False)
    embeddings = np.array(embeddings).astype(np.float32)
    return vocab, embeddings

# 下载Glove词向量,并加载生成词表和词向量权重矩阵
glove_path = download('glove.6B.zip', 'https://mindspore-website.obs.myhuaweicloud.com/notebook/datasets/glove.6B.zip')
vocab, embeddings = load_glove(glove_path)
len(vocab.vocab())

idx = vocab.tokens_to_ids('the')
embedding = embeddings[idx]
idx, embedding

数据集预处理

通过加载器加载的IMDB数据集进行了分词处理,但不满足构造训练数据的需要,因此要对其进行额外的预处理。其中包含的预处理如下:

  • 通过Vocab将所有的Token处理为index id。
  • 将文本序列统一长度,不足的使用<pad>补齐,超出的进行截断。

这里使用mindspore.dataset中提供的接口进行预处理操作。这里使用到的接口均为MindSpore的高性能数据引擎设计,每个接口对应操作视作数据流水线的一部分,详情请参考MindSpore数据引擎
首先针对token到index id的查表操作,使用text.Lookup接口,将前文构造的词表加载,并指定unknown_token。其次为文本序列统一长度操作,使用PadEnd接口,此接口定义最大长度和补齐值(pad_value),这里我们取最大长度为500,填充值对应词表中<pad>的index id。

除了对数据集中text进行预处理外,由于后续模型训练的需要,要将label数据转为float32格式。

代码示例:

import mindspore as ms

lookup_op = ds.text.Lookup(vocab, unknown_token='<unk>')
pad_op = ds.transforms.PadEnd([500], pad_value=vocab.tokens_to_ids('<pad>'))
type_cast_op = ds.transforms.TypeCast(ms.float32)

imdb_train = imdb_train.map(operations=[lookup_op, pad_op], input_columns=['text'])
imdb_train = imdb_train.map(operations=[type_cast_op], input_columns=['label'])

imdb_test = imdb_test.map(operations=[lookup_op, pad_op], input_columns=['text'])
imdb_test = imdb_test.map(operations=[type_cast_op], input_columns=['label'])

imdb_train, imdb_valid = imdb_train.split([0.7, 0.3])

imdb_train = imdb_train.batch(64, drop_remainder=True)
imdb_valid = imdb_valid.batch(64, drop_remainder=True)

模型构建

完成数据集的处理后,我们设计用于情感分类的模型结构。首先需要将输入文本(即序列化后的index id列表)通过查表转为向量化表示,此时需要使用nn.Embedding层加载Glove词向量;然后使用RNN循环神经网络做特征提取;最后将RNN连接至一个全连接层,即nn.Dense,将特征转化为与分类数量相同的size,用于后续进行模型优化训练。整体模型结构如下:

nn.Embedding -> nn.RNN -> nn.Dense

这里我们使用能够一定程度规避RNN梯度消失问题的变种LSTM(Long short-term memory)做特征提取层。

Embedding

Embedding层又可称为EmbeddingLookup层,其作用是使用index id对权重矩阵对应id的向量进行查找,当输入为一个由index id组成的序列时,则查找并返回一个相同长度的矩阵,例如:

embedding = nn.Embedding(1000, 100) # 词表大小(index的取值范围)为1000,表示向量的size为100
input shape: (1, 16)                # 序列长度为16
output shape: (1, 16, 100)

这里我们使用前文处理好的Glove词向量矩阵,设置nn.Embeddingembedding_table为预训练词向量矩阵。对应的vocab_size为词表大小400002,embedding_size为选用的glove.6B.100d向量大小,即100。

RNN

循环神经网络(Recurrent Neural Network, RNN)是一类以序列(sequence)数据为输入,在序列的演进方向进行递归(recursion)且所有节点(循环单元)按链式连接的神经网络。下图为RNN的一般结构:
RNN-0

图示左侧为一个RNN Cell循环,右侧为RNN的链式连接平铺。实际上不管是单个RNN Cell还是一个RNN网络,都只有一个Cell的参数,在不断进行循环计算中更新。

由于RNN的循环特性,和自然语言文本的序列特性(句子是由单词组成的序列)十分匹配,因此被大量应用于自然语言处理研究中。下图为RNN的结构拆解:
RNN

RNN单个Cell的结构简单,因此也造成了梯度消失(Gradient Vanishing)问题,具体表现为RNN网络在序列较长时,在序列尾部已经基本丢失了序列首部的信息。为了克服这一问题,LSTM(Long short-term memory)被提出,通过门控机制(Gating Mechanism)来控制信息流在每个循环步中的留存和丢弃。下图为LSTM的结构拆解:
LSTM

本节我们选择LSTM变种而不是经典的RNN做特征提取,来规避梯度消失问题,并获得更好的模型效果。下面来看MindSpore中nn.LSTM对应的公式:

h 0 : t , ( h t , c t ) = LSTM ( x 0 : t , ( h 0 , c 0 ) ) h_{0:t}, (h_t, c_t) = \text{LSTM}(x_{0:t}, (h_0, c_0)) h0:t,(ht,ct)=LSTM(x0:t,(h0,c0))

这里nn.LSTM隐藏了整个循环神经网络在序列时间步(Time step)上的循环,送入输入序列、初始状态,即可获得每个时间步的隐状态(hidden state)拼接而成的矩阵,以及最后一个时间步对应的隐状态。我们使用最后的一个时间步的隐状态作为输入句子的编码特征,送入下一层。

Time step:在循环神经网络计算的每一次循环,成为一个Time step。在送入文本序列时,一个Time step对应一个单词。因此在本例中,LSTM的输出 h 0 : t h_{0:t} h0:t对应每个单词的隐状态集合, h t h_t ht c t c_t ct对应最后一个单词对应的隐状态。

Dense

在经过LSTM编码获取句子特征后,将其送入一个全连接层,即nn.Dense,将特征维度变换为二分类所需的维度1,经过Dense层后的输出即为模型预测结果。

代码示例:

import math
import mindspore as ms
import mindspore.nn as nn
import mindspore.ops as ops
from mindspore.common.initializer import Uniform, HeUniform

class RNN(nn.Cell):
    def __init__(self, embeddings, hidden_dim, output_dim, n_layers,
                 bidirectional, pad_idx):
        super().__init__()
        vocab_size, embedding_dim = embeddings.shape
        self.embedding = nn.Embedding(vocab_size, embedding_dim, embedding_table=ms.Tensor(embeddings), padding_idx=pad_idx)
        self.rnn = nn.LSTM(embedding_dim,
                           hidden_dim,
                           num_layers=n_layers,
                           bidirectional=bidirectional,
                           batch_first=True)
        weight_init = HeUniform(math.sqrt(5))
        bias_init = Uniform(1 / math.sqrt(hidden_dim * 2))
        self.fc = nn.Dense(hidden_dim * 2, output_dim, weight_init=weight_init, bias_init=bias_init)

    def construct(self, inputs):
        embedded = self.embedding(inputs)
        _, (hidden, _) = self.rnn(embedded)
        hidden = ops.concat((hidden[-2, :, :], hidden[-1, :, :]), axis=1)
        output = self.fc(hidden)
        return output

损失函数与优化器

完成模型主体构建后,首先根据指定的参数实例化网络;然后选择损失函数和优化器。针对本节情感分类问题的特性,即预测Positive或Negative的二分类问题,我们选择nn.BCEWithLogitsLoss(二分类交叉熵损失函数)。

代码示例:

hidden_size = 256
output_size = 1
num_layers = 2
bidirectional = True
lr = 0.001
pad_idx = vocab.tokens_to_ids('<pad>')

model = RNN(embeddings, hidden_size, output_size, num_layers, bidirectional, pad_idx)
loss_fn = nn.BCEWithLogitsLoss(reduction='mean')
optimizer = nn.Adam(model.trainable_params(), learning_rate=lr)

训练逻辑

在完成模型构建,进行训练逻辑的设计。一般训练逻辑分为一下步骤:

  1. 读取一个Batch的数据;
  2. 送入网络,进行正向计算和反向传播,更新权重;
  3. 返回loss。

下面按照此逻辑,使用tqdm库,设计训练一个epoch的函数,用于训练过程和loss的可视化。

代码示例:

def forward_fn(data, label):
    logits = model(data)
    loss = loss_fn(logits, label)
    return loss

grad_fn = ms.value_and_grad(forward_fn, None, optimizer.parameters)

def train_step(data, label):
    loss, grads = grad_fn(data, label)
    optimizer(grads)
    return loss

def train_one_epoch(model, train_dataset, epoch=0):
    model.set_train()
    total = train_dataset.get_dataset_size()
    loss_total = 0
    step_total = 0
    with tqdm(total=total) as t:
        t.set_description('Epoch %i' % epoch)
        for i in train_dataset.create_tuple_iterator():
            loss = train_step(*i)
            loss_total += loss.asnumpy()
            step_total += 1
            t.set_postfix(loss=loss_total/step_total)
            t.update(1)

评估指标和逻辑

训练逻辑完成后,需要对模型进行评估。即使用模型的预测结果和测试集的正确标签进行对比,求出预测的准确率。由于IMDB的情感分类为二分类问题,对预测值直接进行四舍五入即可获得分类标签(0或1),然后判断是否与正确标签相等即可。

代码示例:

def binary_accuracy(preds, y):
    """
    计算每个batch的准确率
    """

    # 对预测值进行四舍五入
    rounded_preds = np.around(ops.sigmoid(preds).asnumpy())
    correct = (rounded_preds == y).astype(np.float32)
    acc = correct.sum() / len(correct)
    return acc

def evaluate(model, test_dataset, criterion, epoch=0):
    total = test_dataset.get_dataset_size()
    epoch_loss = 0
    epoch_acc = 0
    step_total = 0
    model.set_train(False)

    with tqdm(total=total) as t:
        t.set_description('Epoch %i' % epoch)
        for i in test_dataset.create_tuple_iterator():
            predictions = model(i[0])
            loss = criterion(predictions, i[1])
            epoch_loss += loss.asnumpy()

            acc = binary_accuracy(predictions, i[1])
            epoch_acc += acc

            step_total += 1
            t.set_postfix(loss=epoch_loss/step_total, acc=epoch_acc/step_total)
            t.update(1)

    return epoch_loss / total

模型训练与保存

前序完成了模型构建和训练、评估逻辑的设计,下面进行模型训练。这里我们设置训练轮数为5轮。同时维护一个用于保存最优模型的变量best_valid_loss,根据每一轮评估的loss值,取loss值最小的轮次,将模型进行保存。为节省用例运行时长,此处num_epochs设置为2,可根据需要自行修改。

代码示例:

num_epochs = 2
best_valid_loss = float('inf')
ckpt_file_name = os.path.join(cache_dir, 'sentiment-analysis.ckpt')

for epoch in range(num_epochs):
    train_one_epoch(model, imdb_train, epoch)
    valid_loss = evaluate(model, imdb_valid, loss_fn, epoch)

    if valid_loss < best_valid_loss:
        best_valid_loss = valid_loss
        ms.save_checkpoint(model, ckpt_file_name)

运行结果:
在这里插入图片描述

模型加载与测试

模型训练完成后,一般需要对模型进行测试或部署上线,此时需要加载已保存的最优模型(即checkpoint),供后续测试使用。这里我们直接使用MindSpore提供的Checkpoint加载和网络权重加载接口:1.将保存的模型Checkpoint加载到内存中,2.将Checkpoint加载至模型。

代码示例:

param_dict = ms.load_checkpoint(ckpt_file_name)
ms.load_param_into_net(model, param_dict)

imdb_test = imdb_test.batch(64)
evaluate(model, imdb_test, loss_fn)

运行结果:
在这里插入图片描述

自定义输入测试

最后我们设计一个预测函数,实现开头描述的效果,输入一句评价,获得评价的情感分类。具体包含以下步骤:

  1. 将输入句子进行分词;
  2. 使用词表获取对应的index id序列;
  3. index id序列转为Tensor;
  4. 送入模型获得预测结果;
  5. 打印输出预测结果。

代码示例:

score_map = {
    1: "Positive",
    0: "Negative"
}

def predict_sentiment(model, vocab, sentence):
    model.set_train(False)
    tokenized = sentence.lower().split()
    indexed = vocab.tokens_to_ids(tokenized)
    tensor = ms.Tensor(indexed, ms.int32)
    tensor = tensor.expand_dims(0)
    prediction = model(tensor)
    return score_map[int(np.round(ops.sigmoid(prediction).asnumpy()))]

predict_sentiment(model, vocab, "This film is terrible")
# 结果:'Negative'
predict_sentiment(model, vocab, "This film is great")
# 结果:'Positive'

截图时间
在这里插入图片描述

  • 14
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
以下是使用RNN实现情感分类的代码示例: ``` import numpy as np import pandas as pd import tensorflow as tf from tensorflow.keras.preprocessing.text import Tokenizer from tensorflow.keras.preprocessing.sequence import pad_sequences from tensorflow.keras.models import Sequential from tensorflow.keras.layers import Dense, Embedding, LSTM, SpatialDropout1D from sklearn.model_selection import train_test_split # 读取数据集 data = pd.read_csv('sentiment_analysis.csv') data = data[['text', 'sentiment']] data = data[data.sentiment != "Neutral"] data['text'] = data['text'].apply(lambda x: x.lower()) data['text'] = data['text'].apply((lambda x: re.sub('[^a-zA-z0-9\s]', '', x))) # 获取文本和标签 texts = data['text'].values labels = pd.get_dummies(data['sentiment']).values # 对文本进行分词,并将每个词转换为数字 tokenizer = Tokenizer(num_words=2000, split=' ') tokenizer.fit_on_texts(texts) X = tokenizer.texts_to_sequences(texts) X = pad_sequences(X) # 划分数据集 X_train, X_test, Y_train, Y_test = train_test_split(X, labels, test_size=0.33, random_state=42) # 构建RNN模型 embed_dim = 128 lstm_out = 196 model = Sequential() model.add(Embedding(2000, embed_dim, input_length=X.shape[1])) model.add(SpatialDropout1D(0.4)) model.add(LSTM(lstm_out, dropout=0.2, recurrent_dropout=0.2)) model.add(Dense(3, activation='softmax')) model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy']) # 训练模型 batch_size = 32 model.fit(X_train, Y_train, epochs=10, batch_size=batch_size, verbose=2) # 评估模型 score, acc = model.evaluate(X_test, Y_test, verbose=2, batch_size=batch_size) print("score: %.2f" % (score)) print("acc: %.2f" % (acc)) ``` 在这个示例中,我们首先读取数据集并对文本进行预处理。然后,我们使用Tokenizer将文本转换为数字,并使用pad_sequences将每个序列填充到相同的长度。然后,我们将数据集划分为训练集和测试集。 接下来,我们构建RNN模型。我们使用Embedding层将每个数字转换为向量,然后添加SpatialDropout1D层和LSTM层。最后,我们添加一个Dense层,并使用softmax激活函数对输出进行分类。我们使用categorical_crossentropy作为损失函数,使用adam优化器进行训练,并使用accuracy作为评估指标。 最后,我们训练模型并评估其性能。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值