基于《甄嬛传》剧本甄嬛台词 打造一个模仿甄嬛语气、风格的专属聊天模型—— Chat-嬛嬛

2023年起,以ChatGPT为开端的AI原生应用开始走进生产场景,无论是日常对话、创作生成、还是解答专业问题,似乎“无所不知、无所不能”。

其底层是相关企业所训练出来的通用大模型,使用过这类工具的同学都能感觉到,现有的通用模型在一些专业化或个性化的任务上,往往并不够 专业、精准 ,比如: 角色扮演 和 模拟特定人物的语气与行为 。

对于需要特定语言风格、情感表达和人物设定的任务,标准大模型往往难以做到精准模仿。 在这种情况下, 定制专属大模型 的技术被广泛关注,我们期待通过投喂特定语料,改造大模型,让模型在某些专业领域或特定任务中表现得更为出色。

这次,我们将 基于《甄嬛传》剧本中的甄嬛台词 ,通过五个简单的步骤,不写一行代码,打造一个模仿甄嬛语气、风格的专属聊天模型—— Chat-嬛嬛 。

关键一 数据集

微调的数据集是定制大模型的关键

真正复杂的工作都是在 清洗数据、处理、生成数据、归类数据 上,这些才是影响最后效果的最大难点问题。

我们常见的微调数据集需要符合 Alpaca格式 ,以我们使用的嬛嬛数据集为例,其样本如下:

{
    "instruction": "小姐,别的秀女都在求中选,唯有咱们小姐想被撂牌子,菩萨一定记得真真儿的——",
    "input": "",
    "output": "嘘——都说许愿说破是不灵的。"
}

字段说明 :

  • instruction:任务的指令,模型需要完成的具体操作,一般可以对应到用户输入的 Prompt 。

  • input:任务所需的输入内容。若任务是开放式的,或者不需要明确输入,可以为空字符串。

  • output:在给定指令和输入的情况下,模型需要生成的期望输出,也就是对应的正确结果或参考答案。

特点与应用 :结构简单清晰,易于理解和处理。它明确地将任务指令和输入内容分离开来,能够很好地适用于各种自然语言处理任务,像文本生成、翻译、总结等任务,尤其适合单轮的、以任务为导向的指令微调任务.

Alpaca格式要求,from:讯飞

ShareGPT格式要求,from:讯飞

内容概要:本文详细介绍了在COMSOL中使用不同参数估计方法(如最小二乘法、遗传算法和贝叶斯推断)来跟踪输出浓度并与实验值进行误差比较的过程。首先,文章简述了扩散方程及其在COMSOL中的应用背景。接着,分别阐述了最小二乘法、遗传算法和贝叶斯推断的具体实现步骤,包括目标函数的定义、参数设置以及优化求解器的选择。随后,讨论了如何通过后处理功能提取计算得到的浓度数据,并将其与实验值进行比较,以评估各方法的准确性。最后,强调了选择合适的方法对于提高模型精度的重要性,并分享了一些实践经验,如避免自动网格细化、使用动态权重调整等技巧。 适合人群:从事工程仿真、化学工程、材料科学等领域研究的技术人员,特别是那些需要利用COMSOL进行参数估计和模型验证的研究者。 使用场景及目标:① 使用COMSOL进行复杂物理现象(如扩散、反应等)的数值模拟;② 对比不同参数估计方法的性能,选择最适合特定应用场景的方法;③ 提高模型预测精度,确保仿真结果与实验数据的一致性。 其他说明:文中提供了大量实用的代码片段和技术细节,帮助读者更好地理解和应用这些方法。同时,作者还分享了许多实际操作中的经验和教训,提醒读者注意常见陷阱,如局部最优、参数相关性和数据预处理等问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值