我对word2vec的理解

知识点

1. sigmoid函数

在这里插入图片描述

2. 逻辑回归

在这里插入图片描述

3. 统计语言模型

统计语言模型是用来计算一个句子的概率的概率模型。
在这里插入图片描述

条件概率的计算

在这里插入图片描述

4. 考虑总体语料库的语言模型

综合所有语料库,利用最大似然,目标函数为:
在这里插入图片描述
下面讨论两种方法来计算上面的条件概率参数:n-gram模型和神经概率语言模型。

  • n-gram模型
    在这里插入图片描述
  • 神经概率语言模型
    实际应用中常采用最大对数似然,即目标函数为:在这里插入图片描述
    为了求解(3.4),用神经网络构造F函数:在这里插入图片描述
    下面阐述一下怎么获取F函数
    在这里插入图片描述在这里插入图片描述在这里插入图片描述
总结

总结:
1. n-gram需要数出语料库的词组的个数,计算量大,每个词语组合出现的次数都要数,F函数的方法只要求出参数,即得出F的函数表达式,便可直接计算。
2.神经概率语言模型,词语之间的相似性可以通过向量体现,n-gram计算不了词向量。
3.函数的方式可以使得相似位置的词对应的词向量相同,而相似位置的词的词义一般是相似的。
4.词向量自带平滑功能,不像n-gram还需要额外处理:
在这里插入图片描述
,这里需要平滑技术处理。
5.函数时,对于语料库中一个给定的句子,词个数不足n-1时,此时可以人为的添加1个或者几个填充向量,他们也参与训练过程。

5. 词向量的理解

词向量在整个神经概率语言模型中扮演的角色:
训练时是用来帮助构造目标函数的辅助参数,训练完成后,只是语言模型的一个副产品。

词向量分类:one-hot表示,分布式表示
分布式表示:通过训练将某种语言中的每一个词映射成一个固定长度的短向量,向量中有大量非0分量,把词的信息分布到各个分量中去了。

  • 举例:在向量空间内,不同的语言享有许多共性,只要实现一个向量空间向另一个向量空间的映射和转换,语言翻译即可实现,英语和西语间转换后,用主成分分析降维,使每个词只含有两个维度,然后分别在二维平面上描出这五个点,五个词在两个向量空间中的相对位置差不多,说明两种不同语言对应向量空间结构之间具有相似性,也说明了用距离刻画词之间相似性的合理性。
    在这里插入图片描述

word2vec数学原理

两种训练方法和两个算法可以组合成四种方式。
在这里插入图片描述

1. CBOW模型的网络结构示意图

在这里插入图片描述
符号说明:
在这里插入图片描述

2. 基于HS的CBOW目标函数及求解

这一块主要讲的是构造目标函数,求解输出层中哈夫曼树中结点的向量,在求出最优向量时,词向量作为副产品也被求出。

在这里插入图片描述在这里插入图片描述在这里插入图片描述在这里插入图片描述

总结

这里是引用

举例子:

在这里插入图片描述在这里插入图片描述

3. skip-gram模型的网络结构示意图

在这里插入图片描述

4. 基于HS的skip-gram目标函数及求解

在这里插入图片描述

参考资料

word2vec中的数学原理详解

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 4
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值