Chapter 5 Linear Algebra

(个人笔记,由于刚开始学习再加上英语不太好,所以有的地理解的可能不太对,望指正)

Chapter 5 Linear Algebra

5.1 Determinants

对于2维向量来说,行列式|ab|等于两个向量形成的平行四边形的面积,这个值是带符号的,正值表示右手性,负值表示左手性。右手性表示第一个向量沿小角度方向旋转到第二个向量是逆时针方向。

在这里插入图片描述

shearing操作不会影响面积
∣ ( a + k b ) b ∣ = ∣ a ( b + k a ) ∣ = ∣ a b ∣ |(a+kb)b|=|a(b+ka)|=|ab| (a+kb)b=a(b+ka)=ab

在这里插入图片描述

除此之外行列式还有以下性质:

∣ ( k a ) b ∣ = ∣ a ( k b ) ∣ = k ∣ a b ∣ ∣ a ( b + c ) ∣ = ∣ a b ∣ + ∣ a c ∣ |(ka)b| = |a(kb)| = k|ab| \\ |a(b+c)|=|ab|+|ac| (ka)b=a(kb)=kaba(b+c)=ab+ac

对于3维向量来说,行列式|abc|等于平行四边体的体积。

在这里插入图片描述

由上图以及shearing操作的性质可知

∣ ( b c b ) a ∣ = ∣ c a ∣ |(b_cb)a|=|ca| (bcb)a=ca

所以可以得出:

b c = ∣ c a ∣ ∣ b a ∣ a c = ∣ b c ∣ ∣ b a ∣ b_c = \frac{|ca|}{|ba|} \\ a_c = \frac{|bc|}{|ba|} bc=bacaac=babc

这是二维空间的Cramer’s rule

5.2 Matrices

5.2.1 Matrix Arithmetic

矩阵的性质:

A B ≠ B A ( A B ) C = A ( B C ) A ( B + C ) = A B + A C ( A + B ) C = A C + B C AB\neq BA \\ (AB)C = A(BC) \\ A(B+C) = AB + AC \\ (A + B)C = AC + BC AB=BA(AB)C=A(BC)A(B+C)=AB+AC(A+B)C=AC+BC

5.2.2 Operations on Matrices

矩阵 A A A的逆矩阵为 A − 1 A^{-1} A1满足 A A − 1 = I AA^{-1}=I AA1=I,两个矩阵结果的逆矩阵满足:

( A B ) − 1 = B − 1 A − 1 (AB)^{-1} = B^{-1}A^{-1} (AB)1=B1A1

矩阵 A A A的转置 A T A^T AT满足:

a i j = a j i ′ a_{ij} = a'_{ji} aij=aji

两个矩阵结果的转置满足:
( A B ) T = B T A T (AB)^T = B^TA^T (AB)T=BTAT

矩阵与行列式之间的关系

∣ A B ∣ = ∣ A ∣ ∣ B ∣ ∣ A − 1 ∣ = 1 ∣ A ∣ ∣ A T ∣ = ∣ A ∣ |AB| = |A||B| \\ |A^{-1}| = \frac{1}{|A|} \\ |A^T| = |A| AB=ABA1=A1AT=A

5.2.3 Vector Operations in Matrix Form

5.2.4 Special Types of Matices

单位矩阵,单位矩阵也是正交矩阵,正交矩阵的行列式的值是 ± 1 \pm1 ±1,正交矩阵的一个特性是矩阵的逆等于转置

5.3 Computing with Matrices and Determinants

取n个n维向量,把他们组成一个有向的平行体,就是行列式的值。

在这里插入图片描述
在这里插入图片描述

求行列式的值得方法是Laplace展开,例如一个4*4的矩阵:

∣ A ∣ = a 12 a 12 c + a 22 a 22 c + a 32 a 32 c + a 42 a 42 c |A| = a_{12}a_{12}^c + a_{22}a_{22}^c + a_{32}a_{32}^c + a_{42}a_{42}^c A=a12a12c+a22a22c+a32a32c+a42a42c

5.3.1 Computing Inverses

矩阵的逆:

A − 1 = 1 ∣ A ∣ A a d j o i n t A^{-1} = \frac{1}{|A|} A_{adjoint} A1=A1Aadjoint

伴随矩阵是余子式矩阵的转置。

5.3.2 Linear Systems

Cramer法则求线性方程的解

5.4 Eigenvalues and Matrix Diagonalization

特征向量是对于矩阵操作之后方向不发生改变的非零向量。

A a ⃗ = λ a ⃗ A a ⃗ − λ I a ⃗ = 0 ( A − λ I ) a ⃗ = 0 A\vec{a} = \lambda \vec{a} \\ A\vec{a}-\lambda I\vec{a} = 0 \\ (A - \lambda I)\vec{a} = 0 \\ Aa =λa Aa λIa =0(AλI)a =0

除非矩阵 A − λ I A - \lambda I AλI是奇异的等式才成立,所以矩阵的行列式为0。

通常情况下,只会求4*4维度以下的矩阵特征值和特征向量。

如果对称矩阵,可以表示为

A = Q D Q T A = QDQ^T A=QDQT

其中Q为正交矩阵,D为对角矩阵,Q的列为A的特征向量,D的对角线上的值为特征值,该形式称为特征值分解。

5.4.1 Singular Value Decomposition

对于非对称矩阵,特征值和特征向量的求解比较复杂,可以使用奇异值分解(SVD),来取得奇异值和奇异向量,与特征值分解不同的是,左右两边的正交矩阵的维度不同

A = U S V T A = USV^{T} A=USVT

U和V的列分别称为左右奇异向量,S为对角矩阵,对角线上的值为奇异值。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值