python数组基础知识——ndarry数组

本文详细介绍了Python中numpy库的ndarry对象,包括创建方法、数组特征、切片读取、数据加工操作以及属性查看和计算属性计算。通过实例展示了ndarry的使用,如多维数组的创建、形状与数据类型的设置,以及切片、重塑和计算属性的运用,是学习numpy数组操作的重要参考资料。
摘要由CSDN通过智能技术生成

目录:

  1. ndarry介绍及创建
  2. ndarry数组特征
  3. 切片与读取
  4. 数据加工操作
  5. 属性查看及计算属性计算

1、ndarry介绍及创建方法

ndarry是numpy的灵魂,代表n维数组

#前提,导入numpy包
import numpy as np
a=np.arange(1,20)#有序数组 大于等于1,小于20,返回为arrary
a

array([ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17,18, 19])

range(1,10,2)#返回值为迭代器 1,10为范围 2为步长
list(range(1,10,2))
b=np.arange(1,10,2)#运行速度快,占用空间小

array([1, 3, 5, 7, 9])

c=np.zeros((5,5))
c

array([[0., 0., 0., 0., 0.],
[0., 0., 0., 0., 0.],
[0., 0., 0., 0., 0.],
[0., 0., 0., 0., 0.],
[0., 0., 0., 0., 0.]])

 d=np.ones((5,5))
 d

array([[1., 1., 1., 1., 1.],
[1., 1., 1., 1., 1.],
[1., 1., 1., 1., 1.],
[1., 1., 1., 1., 1.],
[1., 1., 1., 1., 1.]])

np.full((3,5),2)

array([[2, 2, 2, 2, 2],
[2, 2, 2, 2, 2],
[2, 2, 2, 2, 2]])

rand=np.random.RandomState(30)
e=rand.randint(0,100,[5,5])
exrand=np.random.RandomState(30)
e=rand.randint(0,100,[5,5])
e

array([[37, 37, 45, 45, 12],
[23, 2, 53

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值