目录:
- ndarry介绍及创建
- ndarry数组特征
- 切片与读取
- 数据加工操作
- 属性查看及计算属性计算
1、ndarry介绍及创建方法
ndarry是numpy的灵魂,代表n维数组
#前提,导入numpy包
import numpy as np
a=np.arange(1,20)#有序数组 大于等于1,小于20,返回为arrary
a
array([ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17,18, 19])
range(1,10,2)#返回值为迭代器 1,10为范围 2为步长
list(range(1,10,2))
b=np.arange(1,10,2)#运行速度快,占用空间小
array([1, 3, 5, 7, 9])
c=np.zeros((5,5))
c
array([[0., 0., 0., 0., 0.],
[0., 0., 0., 0., 0.],
[0., 0., 0., 0., 0.],
[0., 0., 0., 0., 0.],
[0., 0., 0., 0., 0.]])
d=np.ones((5,5))
d
array([[1., 1., 1., 1., 1.],
[1., 1., 1., 1., 1.],
[1., 1., 1., 1., 1.],
[1., 1., 1., 1., 1.],
[1., 1., 1., 1., 1.]])
np.full((3,5),2)
array([[2, 2, 2, 2, 2],
[2, 2, 2, 2, 2],
[2, 2, 2, 2, 2]])
rand=np.random.RandomState(30)
e=rand.randint(0,100,[5,5])
exrand=np.random.RandomState(30)
e=rand.randint(0,100,[5,5])
e
array([[37, 37, 45, 45, 12],
[23, 2, 53