罗斯·利特尔伍德悖论

我们有无限个球和一个花瓶,现在我们要对它们进行一系列操作。每次操作都是一样的:往花瓶里放 10 个球,然后取出 1 个球。那么,无穷多次这样的操作之后,花瓶里有多少个球呢?

有人或许会说,这个问题显然是荒谬的——这个过程需要耗费无穷的时间,我们不可能等到那个时候。那么,我们不妨换一个问法,避开所需时间无穷的问题:在差一分钟到正午 12 点时进行第 1 次操作,在差 30 秒(1/2 分钟)到正午 12 点时进行第 2 次操作,在差 1/2 n-1 分钟到 12 点时进行第 n 次操作。那么,12 点的时候,花瓶里有几个球呢?

无穷多个?还是一个都没有。在邹恒明的《算法之道》了曾提及这个问题,说明了取法的不同会造成最终的结果不同。

数学家 Allis 和 Koetsier 却不这么认为。他们认为,12 点时瓶子里没有球,因为我们第 1 次放进 1 至 10 号球,然后取出 1 号球,第 2 次放入 11 至 20 号球,然后取出 2 号球⋯⋯注意到,n 号球总是在第 n 次操作时被取出来了,因此无限操作下去,每个球都会被取出来!细心的读者会发现,这个说法也有问题:前面的证明假设我们取出的依次是 1 号球、2 号球、3 号球等等,如果我们改成依次取 10 号球、20 号球、30 号球,那么最后瓶子里又出现了无限个球了。哪种观点是正确的呢?于是逻辑学家詹姆斯·亨勒(James M. Henle)和托马斯·泰马祖科(Thomas Tymoczko)认为,花瓶里有任意个球。他们还给出了具体的构造方法,说明最终花瓶里的球可以是任意数目。

关于最后一个球都没有的取法似乎直观上难以接受,但又千真万却,多年之后许多人都强调了取法不同会带来不同的结果,却罕有人提及这是在无限次取球的前提下得到的结果,从有穷到无穷已经发生了本质的变化,这也是需要被强调的!


  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
M/G/1队列模型是一种排队论模型,用来描述顾客到达一个系统中,然后进行服务的过程。在该模型中,"M"代表到达时间服从泊松分布,即到达顾客之间的时间间隔是随机的且符合指数分布;"G"代表服务时间服从一般分布,即每个顾客所需的服务时间是随机的,可以符合任意分布;"1"代表只有一个服务员,即只有一个服务通道。 在M/G/1队列模型中,假设到达的顾客数目无限,每个顾客的到达时间和服务时间是相互独立的。当一个顾客到达时,如果服务通道空闲,则立即开始服务;如果服务通道忙碌,则该顾客进入一个排队等待服务的队列中。当当前顾客的服务完成后,下一个顾客开始接受服务。 我们常常关心的指标是平均等待时间和系统繁忙度。平均等待时间是指顾客在队列中等待服务的平均时间,它受到到达率和服务率的影响。系统繁忙度是指服务通道的利用率,即服务通道忙碌的时间占总时间的比例,它反映系统的效率。 要计算平均等待时间和系统繁忙度,需要知道到达率和服务率。当到达率小于服务率时,系统可以达到稳定状态,此时可以使用利特尔公式计算平均队长和平均等待时间。当到达率等于或大于服务率时,系统无法达到稳定状态。 总之,M/G/1队列模型通过考虑到达时间和服务时间的不确定性,可以对实际排队系统进行建模和分析,从而帮助我们优化系统性能,提高服务质量。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值