Linear SVM 和 LR 有什么异同
- Linear SVM和LR都是线性分类器
- Linear SVM不直接依赖数据分布,分类平面不受一类点影响;LR则受所有数据点的影响,如果数据不同类别strongly unbalance一般需要先对数据做balancing
- Linear SVM依赖数据表达的距离测度,所以需要对数据先做normalization;LR不受其影响
- Linear SVM依赖penalty的系数,实验中需要做validation
- Linear SVM和LR的performance都会收到outlier的影响,其敏感程度而言,谁更好很难下明确结论
以上来源 https://www.zhihu.com/question/26768865/answer/34048357
Liblinear支持两个热门的二元线性分类器:常规逻辑回归LR和线性SVM。给出一组实例标签(xi,yi),i=1,…l,xi∈Rn,yi∈{-1,1},这两个分类器使用了不同的损失算法解决下面的约束优化问题。其中,C是大于0的惩罚因子。对于SVM来说,有两个常用的损失算法max(1-yiwTxi,0)和max(1-yiwTxi,0)2,分别指的是L1-SVM和L2-SVM。对LR来说,损失算法是log(1+e-yiwTxi),得自一个概率模型。在有些案例中,分类器的判别式还要包含一个偏差项b。Liblinear通过对每