C语言实战4:杨辉三角

用c语言实现杨辉三角

前提:每行端点与结尾的数为1.

(与上图中的n不同,这里第一行定义为n=1)

  1. 1.

    每个数等于它上方两数之和。

  2. 2.

    每行数字左右对称,由1开始逐渐变大。

  3. 3.

    第n行的数字有n项。

  4. 4.

    前n行共[(1+n)n]/2 个数。

  5. 5.

    第n行的m个数可表示为 C(n-1,m-1),即为从n-1个不同元素中取m-1个元素的组合数。

  6. 6.

    第n行的第m个数和第n-m+1个数相等 ,为组合数性质之一。

  7. 7.

    每个数字等于上一行的左右两个数字之和。可用此性质写出整个杨辉三角。即第n+1行的第i个数等于第n行的第i-1个数和第i个数之和,这也是组合数的性质之一。即 C(n+1,i)=C(n,i)+C(n,i-1)。

  8. 8.

    (a+b)n的展开式中的各项系数依次对应杨辉三角的第(n+1)行中的每一项。

  9. 9.

    将第2n+1行第1个数,跟第2n+2行第3个数、第2n+3行第5个数……连成一线,这些数的和是第4n+1个斐波那契数;将第2n行第2个数(n>1),跟第2n-1行第4个数、第2n-2行第6个数……这些数之和是第4n-2个斐波那契数。

  10. 10.

    将第n行的数字分别乘以10^(m-1),其中m为该数所在的列,再将各项相加的和为11^(n-1)。11^0=1,11^1=1x10^0+1×10^1=11,11^2=1×10^0+2x10^1+1x10^2=121,11^3=1x10^0+3×10^1+3x10^2+1x10^3=1331,11^4=1x10^0+4x10^1+6x10^2+4x10^3+1x10^4=14641,11^5=1x10^0+5x10^1+10x10^2+10x10^3+5x10^4+1×10^5=161051。

  11. 11.

    第n行数字的和为2^(n-1)。1=2^(1-1),1+1=2^(2-1),1+2+1=2^(3-1),1+3+3+1=2^(4-1),1+4+6+4+1=2^(5-1),1+5+10+10+5+1=2^(6-1)。

  12. 12.

    斜线上数字的和等于其向左(从左上方到右下方的斜线)或向右拐弯(从右上方到左下方的斜线),拐角上的数字。1+1=2,1+1+1=3,1+1+1+1=4,1+2=3,1+2+3=6,1+2+3+4=10,1+3=4,1+3+6=10,1+4=5。

  13. 13.

    将各行数字左对齐,其右上到左下对角线数字的和等于斐波那契数列的数字。1,1,1+1=2,2+1=3,1+3+1=5,3+4+1=8,1+6+5+1=13,4+10+6+1=21,1+10+15+7+1=34,5+20+21+8+1=55。

注明:以上解释均来源于百度百科。

int main()
{
    printf("请输入需要多少层杨辉三角\n");
    int n ;  
    scanf("%d",&n);
    int yanghui[n][n] ;
    for ( int x = 0 ; x < n ; x++)
    {
        for ( int y = 0 ; y < n ; y++ )
        {
            if (y == 0 || y == x)
            { 
                yanghui[x][y] = 1 ;
            }
            else
            {
                yanghui[x][y] = 0 ;
            }
        }
    }
    for ( int x = 0 ; x < n ; x++)
    {
        for ( int y = 0 ; y < n ; y++ )
        {
            if (y == 0 || y == x)
            { 
                yanghui[x][y] = 1 ;
            }
            else
            {
                if ( y <= x )
                yanghui[x][y] = yanghui[x-1][y-1] + yanghui[x-1][y] ;
            }
        }
    }
    int x , y ;
    for( int h = 1 ; h <= n; h++ ) 
    {
        x = h-1 ; 
        y = 0 ;
        int a = 0 ;
        for( int l = 1  ; l <= 2 * n - 1 ; l++ )
        {
            if( l <= n - h || l >= n + h)
            {
                printf("   ");
            }
            else
            {
                if( x == l-n)
                {
                    printf(" %d ",yanghui[x][y]);
                }
                else
                {
                    if ( a == 0 )
                    {
                        printf(" %d ",yanghui[x][y]);
                        y++;
                        a = 1 ;
                    }
                    else
                    {
                        printf("   ");
                        a = 0 ;
                    }
                    
                }
            }  
        }
        printf("\n");
    }
    return 0 ;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

x陌北x

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值