用c语言实现杨辉三角
前提:每行端点与结尾的数为1.
(与上图中的n不同,这里第一行定义为n=1)
- 1.
每个数等于它上方两数之和。
- 2.
每行数字左右对称,由1开始逐渐变大。
- 3.
第n行的数字有n项。
- 4.
前n行共[(1+n)n]/2 个数。
- 5.
第n行的m个数可表示为 C(n-1,m-1),即为从n-1个不同元素中取m-1个元素的组合数。
- 6.
第n行的第m个数和第n-m+1个数相等 ,为组合数性质之一。
- 7.
每个数字等于上一行的左右两个数字之和。可用此性质写出整个杨辉三角。即第n+1行的第i个数等于第n行的第i-1个数和第i个数之和,这也是组合数的性质之一。即 C(n+1,i)=C(n,i)+C(n,i-1)。
- 8.
(a+b)n的展开式中的各项系数依次对应杨辉三角的第(n+1)行中的每一项。
- 9.
将第2n+1行第1个数,跟第2n+2行第3个数、第2n+3行第5个数……连成一线,这些数的和是第4n+1个斐波那契数;将第2n行第2个数(n>1),跟第2n-1行第4个数、第2n-2行第6个数……这些数之和是第4n-2个斐波那契数。
- 10.
将第n行的数字分别乘以10^(m-1),其中m为该数所在的列,再将各项相加的和为11^(n-1)。11^0=1,11^1=1x10^0+1×10^1=11,11^2=1×10^0+2x10^1+1x10^2=121,11^3=1x10^0+3×10^1+3x10^2+1x10^3=1331,11^4=1x10^0+4x10^1+6x10^2+4x10^3+1x10^4=14641,11^5=1x10^0+5x10^1+10x10^2+10x10^3+5x10^4+1×10^5=161051。
- 11.
第n行数字的和为2^(n-1)。1=2^(1-1),1+1=2^(2-1),1+2+1=2^(3-1),1+3+3+1=2^(4-1),1+4+6+4+1=2^(5-1),1+5+10+10+5+1=2^(6-1)。
- 12.
斜线上数字的和等于其向左(从左上方到右下方的斜线)或向右拐弯(从右上方到左下方的斜线),拐角上的数字。1+1=2,1+1+1=3,1+1+1+1=4,1+2=3,1+2+3=6,1+2+3+4=10,1+3=4,1+3+6=10,1+4=5。
- 13.
将各行数字左对齐,其右上到左下对角线数字的和等于斐波那契数列的数字。1,1,1+1=2,2+1=3,1+3+1=5,3+4+1=8,1+6+5+1=13,4+10+6+1=21,1+10+15+7+1=34,5+20+21+8+1=55。
注明:以上解释均来源于百度百科。
int main()
{
printf("请输入需要多少层杨辉三角\n");
int n ;
scanf("%d",&n);
int yanghui[n][n] ;
for ( int x = 0 ; x < n ; x++)
{
for ( int y = 0 ; y < n ; y++ )
{
if (y == 0 || y == x)
{
yanghui[x][y] = 1 ;
}
else
{
yanghui[x][y] = 0 ;
}
}
}
for ( int x = 0 ; x < n ; x++)
{
for ( int y = 0 ; y < n ; y++ )
{
if (y == 0 || y == x)
{
yanghui[x][y] = 1 ;
}
else
{
if ( y <= x )
yanghui[x][y] = yanghui[x-1][y-1] + yanghui[x-1][y] ;
}
}
}
int x , y ;
for( int h = 1 ; h <= n; h++ )
{
x = h-1 ;
y = 0 ;
int a = 0 ;
for( int l = 1 ; l <= 2 * n - 1 ; l++ )
{
if( l <= n - h || l >= n + h)
{
printf(" ");
}
else
{
if( x == l-n)
{
printf(" %d ",yanghui[x][y]);
}
else
{
if ( a == 0 )
{
printf(" %d ",yanghui[x][y]);
y++;
a = 1 ;
}
else
{
printf(" ");
a = 0 ;
}
}
}
}
printf("\n");
}
return 0 ;
}